

COURSES INFORMATION FOR THE BSC. BIOCHEMISTRY

LEVEL I - (24 CREDITS)

BIOC1015 Introduction to Biochemistry

BIOL1020 Diversity of Life I

BIOL1025 Diversity of Life II

BIOL1030 Introduction to Genetics

CHEM1110 Introduction to Organic Chemistry

CHEM1120 Introduction to Physical Chemistry

CHEM1125 Introduction to Experimental Chemistry

CHEM1130 Introduction to Inorganic Chemistry

LEVELS II & III (60 CREDITS)

LEVEL II (12 Credits)

BIOL2373 Skills for Biologists

BIOC2371 Molecular Techniques

BIOC2365 Primary Metabolism

BIOC2366 Protein Biochemistry

AND 3 Credits from:

BIOL2166 Advanced Genetics I

BIOC2370 Cell Signals

LEVEL III - (3 Credits)

BIOC3265 Principles of Bioinformatics

AND 12 Credits from:

BIOC2900 Biochemistry Exchange Elective

BIOC3370 Basis of Human Disease

BIOC3260 Principles of Biotechnology

BIOC3261 Mitochondrial Bioenergetics

BIOC3990 Biochemistry Project

BIOL3025 Molecular Plant Pathology

CHEM3635 Biological Inorganic Chemistry

AND Thirty (30) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND 9 CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

MAJOR IN BIOCHEMISTRY:

LEVEL I - (24 Credits)

BIOC1015 Introduction to Biochemistry

BIOL1020 Diversity of Life I

BIOL1025 Diversity of Life II

BIOL1030 Introduction to Genetics

CHEM1110 Introduction to Organic Chemistry

CHEM1120 Introduction to Physical Chemistry

CHEM1125 Introduction to Experimental Chemistry

CHEM1130 Introduction to Inorganic Chemistry

LEVEL II - (15 Credits)

BIOL2373 Skills for Biologists¹

BIOC2371 Molecular Techniques

BIOC2365 Primary Metabolism

BIOC2366 Protein Biochemistry

LEVEL III - (15 Credits)

BIOC3265 Principles of Bioinformatics

AND 12 Credits from among the following:

Current Level II BIOC, Level III BIOC and CHEM elective courses:

BIOC2900 Biochemistry Exchange Elective

BIOC3370 Basis of Human Disease

BIOC3260 Principles of Biotechnology

BIOC3261 Mitochondrial Bioenergetics

BIOC3990 Biochemistry Project

BIOL3025 Molecular Plant Pathology

CHEM3635 Biological Inorganic Chemistry

AND 3 Credits from ONE of the following:

BIOL2166 Advanced Genetics I

BIOC2370 Cell Signals

¹This course is offered in both semesters but it is recommended that Biochemistry Majors take this course in Semester 1.

MINOR IN BIOCHEMISTRY:

[Fifteen (15) Credits]:

BIOC1015 Introduction to Biochemistry

BIOL1030 Introduction to Genetics

BIOC2366 Protein Biochemistry

AND ANY TWELVE (12) Credits from:

BIOC2365 Primary Metabolism

BIOC3370 Basis of Human Disease

BIOC3260 Principles of Biotechnology

BIOC3261 Mitochondrial Bioenergetics

BIOC3290 Biochemistry Project for Minors

BIOL3025 Molecular Plant Pathology

CHEM3635 Biological Inorganic Chemistry

LEVEL I BIOCHEMISTRY COURSES

BIOC1015 INTRODUCTION TO BIOCHEMISTRY (3 Credits)

Pre-requisite: CAPE Chemistry Unit 1 (or CHEM0615) and CAPE Chemistry Unit 2 (or CHEM0625) or an approved equivalent

Anti-requisite: BIOC1351 Introductory Biochemistry

Syllabus: Water and acid/base chemistry: properties of water and aqueous solutions, ionization of water, weak acids and bases, buffers, Henderson-Hasselbach equation. Structure and function of biological molecules: lipids, carbohydrates, amino acids and proteins. Cell biology: structure and function of bacterial, plant and animal cells, and membrane transport. Cell fractionation: differential and sucrose centrifugation. Thermodynamics/bioenergetics: free energy, energy changes in redox reactions, ATP, substrate-level phosphorylation. Electron transport-based phosphorylation: oxidative phosphorylation in mitochondria, photophosphorylation in chloroplasts, chemiosmotic theory. Biochemical techniques: chromatography, electrophoresis. Carbohydrate metabolism: glycolysis and TCA cycle.

Teaching: 20 lectures (1h each), 6 tutorials (1h each) and 6 practical sessions (3h each),

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course tests and assignments	25%
Practical reports	25%

BIOL1020 - DIVERSITY OF LIFE I (3 Credits)

Pre-requisite: CAPE Biology Unit 1 (or BIOL0051) and CAPE Biology Unit 2 (or BIOL0052)

OR

CAPE Environmental Science Units 1 & 2 and CSEC Biology

Anti-requisite: BIOL1051 Biodiversity I

Syllabus: Evolution: Evolutionary theories. Mechanisms of evolution. Evidence of evolution. Ecology: Introduction to ecology. Major terrestrial biomes. Trophic structure and energy flow in ecosystems. The biodiversity concept. Two-species interactions within communities. Systematics: Principles of taxonomy (description, identification, nomenclature, classification) and the study of phylogeny. Classification systems. Simple cladograms. Microbial diversity: Microscopy: theoretical and practical aspects. Bacteria, Archaea, eukaryotic microorganisms, viruses. Plant diversity: What is a plant? Green algae: diversity of form, life cycles and sexual reproduction. Mosses & liverworts: key features, life cycle, spore dispersal mechanisms. Ferns & Fern allies: key features, life cycles. Evolution of seeds. Cycads & conifers: key features, life cycles. Angiosperms: unique attributes, floral trends, adaptations.

Teaching: 24 lectures (1h each) and 8 practical sessions (3h each).

Method of Examination:

Theory: Final examination (2 hours) 50%

Theory: In-course test(s) 10%

Practical: Reports, quizzes 30%

Practical: Final practical test 10%

BIOL1025 - DIVERSITY OF LIFE II (3 Credits)

Pre-requisite: CAPE Biology Unit 1 (or BIOL0051) and CAPE Biology Unit 2 (or BIOL0052)

OR

CAPE Environmental Science Units I & 2 and CSEC Biology

Anti-requisite: BIOL1052 Biodiversity II

Syllabus: Sponges – cell aggregate body plan; filter feeding. Cnidarians and ctenophores - diploblastic, blind sac, radially symmetrical body plan; polymorphism. Flatworms – acoelomate, triploblastic, bilaterally symmetrical blind sac body plan; comparison of parasitic and free-living. Nematodes and rotifers – pseudocoelomate tube-within-a-tube body plan; eutely; parthenogenesis; life cycles. Molluscs – soft-bodied coelomates with a shell; adaptive radiation. Annelids – segmented worms. Arthropods - factors responsible for their success. Echinoderms – their unique features. The invertebrate chordates. Fish - evolution of bone, jaws and paired fins; adaptations to life in water. Amphibians - challenges to life on land and how these were met. Amniotes – the amniote egg; comparisons of amniote integuments. Birds – adaptations for flight. Mammals - reproductive patterns.

Teaching: 24 lectures (1h each) and 12 practical sessions (2 h each).

Method of Examination:

Theory: Final Examination (2 hours) 50%

Theory: In-course tests 10%

Practical: Quizzes, lab reports, and lab test 40%

BIOL1030 - INTRODUCTION TO GENETICS (3 Credits)

Pre-requisite: CAPE Biology Unit 1 (or BIOL0051) and CAPE Biology Unit 2 (or BIOL0052)

OR

CAPE Environmental Science Units 1 & 2 and CSEC Biology

OR

BCC Associate degree in Biology

OR

BCC Associate degree in Environmental Science and CSEC Biology

Anti-requisite:None

Syllabus: Cell division: The cell cycle, mitosis and meiosis. Heredity: Mendelian genetics, modifications from the basic principles, epistasis, linkage and sex-linked genes. The Nature of the Genetic Material: Experimental evidence implicating the nucleic acids. DNA structure and DNA conformation. Organization of eukaryotic chromatin. DNA Replication and Assortment: Semi-conservative replication. Modes of replication. The Genetic Material as an Information Carrier: The Central Dogma. Collinearity. Transcription and translation in prokaryotes & eukaryotes. Population Genetics: Gene pools; Transmission of genes between generations; Hardy-Weinberg (2 and 3 alleles); Selection pressures; selection against a recessive allele; mutation and migration.

Teaching: 18 lectures (1h each), 6 tutorials (1h each) and 8 practical sessions (3h each).

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course test(s) and assignments	25%
Practical: Quizzes, exercises and reports	25%

CHEM1110 - INTRODUCTION TO ORGANIC CHEMISTRY (3 Credits)

Pre-requisite: CHEM0615 and CHEM0625; or CAPE CHEMISTRY UNITS 1 and 2; or EQUIVALENT

Co-requisite: None

Syllabus: This course covers the basic and fundamental principles of organic chemistry and exposes students to the concepts of chemical bonding in organic molecules, functional groups, nomenclature, stereochemistry and reaction mechanisms. Electron pushing formalism will be emphasized in an attempt to discourage rote learning and to allow students to better understand the language of organic chemistry. Students will be expected to apply their knowledge to interpret reactions based on their patterns of reactivity and hence predict and explain unknown reactions.

Teaching: Two one-hour lectures and a one-hour tutorial per week.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	50%

CHEM1120 - INTRODUCTION TO PHYSICAL CHEMISTRY (3 Credits)

Pre-requisite: CHEM0615 and CHEM0625; or CAPE CHEMISTRY UNITS 1 and 2; or EQUIVALENT

Co-requisite: None

Syllabus: This course seeks to provide students with knowledge of the fundamental principles of physical chemistry with an emphasis on thermodynamics, energetics, chemical kinetics, electrochemistry and the fundamentals of spectroscopy. The aim is to provide 1st year (i.e. fully matriculated) students with a theoretical foundation for the more advanced and specialised 2nd and 3rd year physical chemistry courses.

Teaching: Two one-hour lectures and a one-hour tutorial per week.

Method of Examination:

Theory: Final Examination (2 hours) 50%

Theory: In-course Test(s)/Assignment(s) 50%

CHEM1125 - INTRODUCTION TO EXPERIMENTAL CHEMISTRY (3 Credits)

Pre-requisite: CHEM0615 and CHEM0625; or CAPE CHEMISTRY UNITS 1 and 2; or EQUIVALENT

Co-requisite: None

Syllabus: This course is a yearlong 3-credit experimental chemistry course with 84 hours of experimental work in which students are exposed to concepts and laboratory skills associated with Organic, Inorganic, Analytical and Physical Chemistry. Students will hone their critical thinking and analytical skills through a series of discussions and experiments designed to improve experimental skills and prepare them for more advanced laboratory techniques.

Teaching: Seven-six (76) hours for practical skills and eight (8) hours for data analysis skill set.

Method of Examination:

Coursework: 100%

CHEM1130 - INTRODUCTION TO INORGANIC CHEMISTRY (3 Credits)

Pre-requisite: CHEM0615 and CHEM0625; or CAPE CHEMISTRY UNITS 1 and 2; or EQUIVALENT

Co-requisite: None

Syllabus: This course seeks to equip biological and chemical sciences students with knowledge of the fundamental principles of inorganic chemistry including atomic and molecular structures and properties, the chemistry of the main group and transition elements, including industrial and commercial applications, coordination compounds and the packing arrangements of ionic structures. These areas will be used as the basis for advanced inorganic chemistry courses required for the major/minor in chemistry.

Teaching: Two one-hour lectures and a one-hour tutorial per week.

Method of Examination:

Theory: Final Examination (2 hours) 50%

Theory: In-course Test(s)/Assignment(s) 50%

LEVELS II & III BIOCHEMISTRY COURSES

BIOL2373 - SKILLS FOR BIOLOGISTS (3 Credits)

Pre-requisites: 15 credits of level-1 courses including 6 credits from Level 1 BIOC/BIOL courses. Restricted to students majoring or minoring in Biology, Ecology, Microbiology or Biochemistry.

Restrictions: Not to be taken by persons who have passed BIOL1010 Basic Skills for Biologists.

Syllabus: Scientific enquiry, data handling and simple statistics: The scientific method. Developing a research plan. Simple experimental design. Categorical and continuous variables. Mode, median, mean, range, quartiles, variance and standard deviation. Hypothesis testing using p-values and confidence intervals. Frequency analysis (chi-square, odds ratio, relative risks). Separation of groups: Parametric tests (t-tests, ANOVA and LSD post-hoc test). Correlation analysis: Parametric (Pearson), Non-parametric (Spearman). Regression analysis (simple linear regression, multiple linear regression). Use of computer software tools for data analysis and presentation of results e.g. EXCEL, Genstat, R, SPSS. Data handling and graph preparation in Excel. Excel applications useful for descriptive statistics.

Dealing with numbers and simple mathematical relationships: Scientific notation, decimal places, significant figures. Simple calculations with number in scientific notation. Precision and accuracy. SI units and prefixes. The rules of exponents and logarithms. Simple calculations involving these. Scientific writing: The format of scientific reporting - Abstract, Introduction, Material and Methods, Results, Discussion, References. Finding relevant information on a topic using electronic and non-electronic sources. Citing and referencing sources. Understanding plagiarism. Common knowledge. Quotations. Use of text matching software, e.g. Turnitin.

Teaching: Twenty-four (24) hours of interactive lectures/tutorials AND Twelve (12) hours tutorials/assessments.

Method of Examination:

Coursework 100%

BIOC2371 - MOLECULAR TECHNIQUES (3 Credits)

Pre-requisites: BIOL1030 Introduction to Genetics (or BIOL1151 Introductory Genetics)

Restrictions: Not to be taken by persons who have passed BIOL2152 General Molecular Biology

Syllabus: Isolation, detection and quantification of DNA, RNA and proteins. Gel electrophoresis and blotting techniques. Restriction and modification systems. Restriction mapping. Hybridization techniques. Gene and protein sequencing. Cloning and expression vectors. Cloning strategies. Construction of Gene libraries. Gene transfer systems. In vitro mutagenesis. Vector systems and detection tools. Selected new generation molecular techniques used in research.

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practicals.

Method of Examination:

Theory: Final Examination (2 hours) 50%

Theory: In-course Test(s)/Assignment(s) 25%

Practical: 25%

BIOC2365 PRIMARY METABOLISM (3 Credits)

Pre-requisites: BIOC1015 Introduction to Biochemistry (or BIOC1351 Introductory Biochemistry)

Restrictions: Not to be taken by persons who have passed BIOC2351 Biochemistry I

Syllabus: Glycolysis and TCA cycle; emphasis on thermodynamic favourability and regulation of pathways. Catabolism of hexoses other than glucose: disaccharides, glycogen and starch. Gluconeogenesis. Biosynthesis of sucrose, starch and glycogen. Glyoxylate shunt. Pentose phosphate pathways. Photosynthetic carbohydrate synthesis. Oxidation of fatty acids in mitochondria, peroxisomes, and glyoxysomes. Oxidation of unsaturated and odd-chain fatty acids. Ketone bodies. Fatty acid biosynthesis, including long chain and unsaturated fatty acids. Overview of amino acid catabolism. Nitrogen excretion and the urea cycle. Biosynthesis of amino acids. Nitrogen fixation and assimilation. Amino acids as biosynthetic precursors. DNA replication. Protein synthesis: transcription and translation. Regulation of prokaryotic gene expression, e.g. lac operon, trp operon and eukaryotic gene expression. Selected examples of water-soluble vitamins and lipid-soluble vitamins.

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practicals.

Method of Examination:

Theory: Final Examination (2 hours) 50%

Theory: In-course Test(s)/Assignment(s) 25%

Practical: 25%

BIOC2366 - PROTEIN BIOCHEMISTRY (3 Credits)

Pre-requisites: BIOC1015 Introduction to Biochemistry (or BIOC1351 Introductory Biochemistry)

Restrictions: Not to be taken by persons who have passed BIOC2352 Biochemistry II

Syllabus: Membrane proteins: structure and function. Protein purification. Definition, structure, mechanism and function of enzymes. Mathematical concepts related to the calculation of enzyme kinetics. Protein post-translational modifications and use of methods to determine protein structure and identity. Protein folding, mis-folding and mechanisms of protein degradation and turnover. Function of protein-protein interaction and suitable methods for investigating these.

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practicals.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	25%
Practical:	25%

BIOL2166 - ADVANCED GENETICS I (3 Credits)

Pre-requisites: BIOL1030 Introduction to Genetics

Restrictions: Not to be taken by persons who have passed BIOL2151 Genetics I

Syllabus: Mutation and DNA repair: Gene, point mutations, chromosomal mutations and genomic mutations: origins, consequences and uses. Mutagens, modes of action and uses in mutation analysis. Mechanisms of DNA repair and disease effects of mutations in DNA repair systems. Gene and genome structure: Gene and genome structure and organization in eukaryotes and prokaryotes. Transposons, types and uses in genetic analyses. The C-value paradox and its interpretation. Extranuclear genomes (chloroplasts and mitochondria): Inheritance, detection and consequences of genes in extranuclear genomes. Gene expression regulation and RNA processing: Introns, exons, promoters, leaders, trailers, enhancers and silencers. Bacterial and viral systems: horizontal gene transfer: conjugation, transduction, transformation, lytic and lysogenic infection in bacteriophages and genetic mapping. Introduction to “cutting edge” topics in modern genetics.

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practical

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	25%
Practical: Quizzes, exercises and reports	25%

BIOC2370 - CELL SIGNALS (3 Credits)

Pre-requisites: BIOC1015 Introduction to Biochemistry (or BIOC1351 Introductory Biochemistry)

Restrictions: Not to be taken by persons who have passed BIOC3053 Cell Signalling

Syllabus: This course provides a comprehensive view of how eukaryotic cells communicate within themselves and between each other normally and in a diseased state. Hormonal signaling in animal systems will be examined, in addition to the regulatory mechanisms used to control these hormones. Animal examples (and selected examples of organisms) of hormonal signaling will be used to understand the biochemical modes of action of these chemical messengers.

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practicals.

Method of Examination:

Theory: Final Examination (2 hours) 50%

Theory: In-course Test(s)/Assignment(s) 25%

Practical: 25%

LEVEL III BIOCHEMISTRY COURSES

BIOC3265 - PRINCIPLES OF BIOINFORMATICS (3 Credits)

Pre-requisite: BIOC2371 Molecular Techniques (or BIOL2152 General Molecular Biology)

Restrictions: Not to be taken by persons who have passed BIOL3152 Bioinformatics

Syllabus: Descriptive terminology in Bioinformatics and basic computer programming; Biological algorithms; Pairwise and Multiple sequence alignments; Global and Local sequence alignment; BLAST and FASTA searches; Secondary structure analyses in molecular data e.g. domain and motif searches; Introduction to key software and databases including MEGA, MEME, NCBI, EBI, and DDBJ databases; Phylogenetic and basic cluster analysis methods; Genome projects, e.g. the Human genome; Microbiome and cancer genome projects as well as plant genome projects.

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practicals.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	30%
Practical: Reports	20%

BIOC2900 - BIOCHEMISTRY EXCHANGE ELECTIVE (3 Credits)

Pre-requisites: Depends on Institution offering course

Syllabus: This course provides an administrative mechanism for a UWI student on exchange at another approved institution to take an elective course in Biochemistry which has no UWI equivalent. The course content will depend on the specific course delivered at the host institution.

Teaching: The teaching methodologies will be determined by the host institution.

Method of Examination:

The course assessment methods will be determined by the host institution.

BIOC3370 - BASIS OF HUMAN DISEASE (3 Credits)

Prerequisite: BIOC2371 Molecular Techniques AND BIOC2370 Cell Signals

Restrictions: Not to be taken by persons who have passed BIOC3354 Biochemistry of Human Disease

Syllabus: Characteristics of the selected diseases/syndromes. Overview of the immune system. Endocrine organs and systems relevant to the selected disease states. Mechanisms of hormones and receptors relevant to the selected disease states. Modulation of hormone levels in healthy and in disease states. System regulators and errors contributing to the disease state. Clinical presentation and progression of the selected diseases/symptoms. The linkage of the symptoms with system errors. Overview of diagnostic tools, drugs and therapies. Disease management. Applications of biochemical techniques used in bio-medical research and forensic sciences.

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practical.

Method of Examination:

Theory: Final Examination (2 hours) 50%

Theory: In-course Test(s)/Assignment(s) 25%

Practical: Reports 25%

BIOC3260 – PRINCIPLES OF BIOTECHNOLOGY (3 Credits)

Pre-requisite: BIOC2371 Molecular Techniques (or BIOL2152 General Molecular Biology)

Syllabus: Biotechnology applications to medicine, e.g. animal and human cell, tissue and organ culture. Medical/pharmaceutical products of animal cell culture. Biotechnology applications to agriculture e.g. plant cell and tissue culture. Plant based production of biofuels, molecular markers. Applications of biotechnology to environmental solutions e.g., monitoring, and remediation of contaminated soils. New and emerging biotechnologies e.g. RNAi, CRISPR, gene therapy, and synthetic biology among other new techniques.

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practicals.

Method of Examination:

Theory: Final Examination (2 hours) 50%

Theory: In-course Test(s)/Assignment(s) 25%

Practical: Reports 25%

BIOC3261 - MITOCHONDRIAL BIOENERGETICS (3 Credits)

Pre-requisite: BIOC2365 Primary Metabolism (or BIOC2351 Biochemistry I) **AND** BIOC2371 Molecular Techniques (or BIOL2152 General Molecular Biology)

Syllabus: Definitions of PMF, $\Delta\psi$ and ΔpH . Mitochondrial respiration and its measurement. Proton leak, mitochondrial uncoupling and uncoupling proteins. Types of ROS, production sites and experimental and physiological conditions. ROS detoxification systems and mechanisms. Comparison of bioenergetics of specific cell types. Free radical theory of aging. Mitochondrial diseases: MERRF, Leigh syndrome, PDCD, beta-oxidation defects.

Teaching: Eighteen (18) hours of lectures; Six (6) hours of tutorials and Twenty-four (24) hours of practicals.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	20%
Practical: Reports	30%

BIOC3990 - BIOCHEMISTRY PROJECT (6 Credits)

Pre-requisites: BIOL2373 Skills for Biologists AND 12 credits from Level II BIOC/BIOL/ECOL/MICR courses. Only available to final year students majoring in Biochemistry.

Restrictions: Not to be taken with BIOL3901 Multidisciplinary Project, BIOL3990 Biology Project, MICR3990 Microbiology Project, ECOL3990 Ecology Project, BIOC3950 Biochemistry Research Project, BIOL3950 Biology Research Project, MICR3950 Microbiology Research Project, ECOL3950 Ecology Research Project, ENSC3900 Research Project in Environmental Science or CHEM 3505 Research Project

Syllabus: Research question. Review of the scientific literature. Research proposal. Collection of data. Analysis of data. Report and illustrated summary. Oral presentation. Topics that address real Biochemical questions, whether pure or applied. Research ethics. Suggestions for specific topics may be considered from students but final proposed topics must come from the prospective supervisor and the Department must have the resources to execute the research.

Method of Examination:

Project report	70%
Seminar	15%
Supervisor assessment	15%

BIOL3025 – MOLECULAR PLANT PATHOLOGY (3 Credits)

Pre-requisites: BIOC2365 Primary Metabolism OR ECOL2460 Essentials of Ecology OR MICR2260 Essential Microbiology AND SIX credits from Level II BIOC, BIOL, ECOL or MICR courses

Restrictions: Not to be taken by persons who have passed BIOL3254 Biochemical Plant Pathology,

Syllabus: This course presents an overview of plant diseases and their impact on agriculture. Emphasis is placed on diseases in tropical agriculture. Central themes in plant disease studies including pathogen infection strategies, molecular and biochemical interactions between pathogen and host, disease resistance, epidemiology, disease management, and molecular disease diagnostics are developed during the course.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	25%
Practical: Reports	25%

CHEM3635 – BIOLOGICAL INORGANIC CHEMISTRY (3 Credits)

Pre-requisites: CHEM2700 Intermediate Inorganic Chemistry **OR** CHEM2100 Inorganic Chemistry I **OR** CHEM2115 Main Group Chemistry **AND** CHEM3115 Transition Metal Chemistry I

Restriction: Not to be taken if student has passed CHEM3135 Bioinorganic Chemistry.

Syllabus: This course is intended for final year chemistry and biochemistry students who wish to cement their knowledge regarding the chemistry of biological molecules. The course will provide students with a general overview of the many fundamental tasks performed by inorganic elements in living organisms as well as the related methods and theories. It focuses on the application of principles of inorganic chemistry to the understanding of biological function at the molecular level. Topics covered include spectroscopic methods in chemical biology, metal ion acquisition & speciation in biological systems, metalloenzymes in metabolism and synthesis, role of metals in diseased states and metal containing pharmaceuticals.

Teaching: Two lectures and one tutorial per week.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	50%

***NOTE: Thirty (30) Levels II and III Credits from any Faculty also to be completed. Three (3) of those Credits can come from a Co-Curricular course.**

FOUNDATION COURSES INFORMATION

FOUN 1006 EXPOSITION FOR ACADEMIC PURPOSES (3 Credits)

This course is designed to: (1) equip students with the study and research skills they will need in order to get the maximum benefit from all their courses at the University; (2) familiarize them with the linguistic situation in the Caribbean and break down common misconceptions they usually have about it; (3) introduce students to the rhetorical modes of discourse; and (4) develop skill in critical thinking and reading.

(Cannot be taken with FOUN1008)

FOUN 1008 AN INTRODUCTION TO PROFESSIONAL WRITING (3 Credits)

This course is designed to help students develop skills common to all professional, workplace-oriented writing, whether in business or science.

(Cannot be taken with FOUN1006)

FOUN 1101 CARIBBEAN CIVILIZATION (3 Credits)

This course is designed to develop an awareness of the main process of cultural development in Caribbean societies, highlighting the factors, the problematics and the creative output that have fed the emergence of Caribbean identities; to develop a perception of the Caribbean as wider than island nations or linguistic blocs; to stimulate students' interest in, and commitment to Caribbean civilization and to further their self-determination.

FOUN 1301 LAW, GOVERNANCE, ECONOMY AND SOCIETY (3 Credits)

This is a multi-disciplinary course of the Faculty of Social Sciences which is designed mainly for non-Social Sciences students. The course will introduce students to some of the major institutions in Caribbean society. It will expose them to both historical and contemporary aspects of Caribbean society, including Caribbean legal, political and economic systems. In addition, Caribbean culture and Caribbean social problems are discussed.

REPLACING A FOUNDATION COURSE WITH A FOREIGN LANGUAGE COURSE

Students in the Faculty of Science and Technology may replace FOUN1101 Caribbean Civilization OR FOUN1301 Law, Governance, Economy and Society with a foreign language course in French, Spanish, Portuguese or Chinese. Students seeking to do such should notify the faculty office via use of Foundation Course Substitution Form on the student resources page of the faculty website.