

FACULTY OF SCIENCE AND TECHNOLOGY

Undergraduate Handbook

2025 - 2026

**THE UNIVERSITY OF THE WEST INDIES
CAVE HILL CAMPUS**

THE UNIVERSITY OF THE WEST INDIES

OUR MISSION

To advance learning, create knowledge and foster innovation for the positive transformation of the Caribbean and the wider world.

OUR VISION

An excellent global university rooted in the Caribbean

OUR CORE VALUES

Integrity
Excellence
Gender Justice
Diversity
Student Centredness

Cover Art by Kyle Remy a 21-year-old, self-taught Graphic Designer, currently pursuing a BSc in Biology with a Minor in Ecology within the FST at the University of the West Indies.

"My process of learning graphic design began in 2019, when I first experimented with creating digital art. What started as simple curiosity quickly became somewhat of a deep passion, driving me to explore illustration, and creative media. Over the years, I've developed a style that blends experimentation with precision, and I'm always seeking new techniques and ideas to refine my craft. Every project is a chance to learn, grow, and bring brand new perspectives to life through my designs."

TABLE OF CONTENTS

MESSAGE FROM THE DEAN	11
ABOUT THIS HANDBOOK	13
ACADEMIC CALENDAR	14
DEAN AND DEPUTY DEANS	15
FACULTY OFFICE	16
DEPARTMENT OF BIOLOGICAL & CHEMICAL SCIENCES	17
DEPARTMENT OF COMPUTER SCIENCE, MATHEMATICS & PHYSICS	21
THE CARIBBEAN INSTITUTE FOR METEOROLOGY AND HYDROLOGY (CIMH)	24
CENTRE FOR RESOURCE MANAGEMENT AND ENVIRONMENTAL STUDIES (CERMES)	25
PRINCIPAL OFFICERS OF THE UNIVERSITY OF THE WEST INDIES	27
IMPORTANT NAMES AND NUMBERS	29
ABOUT THE UWI AND THE FACULTY	30
UNDERGRADUATE ADMISSIONS	32
QUALIFICATIONS	32
APPLICATION PROCEDURE	32
PROFICIENCY TEST FOR NEW STUDENTS	34
INTERNATIONAL EXCHANGE/STUDY	34
DEFINITIONS OF KEY TERMS	35
GENERAL STUDENT INFORMATION	37
ACADEMIC ADVISORS	37
COURSE REGISTRATION	37
COURSES AND TIMETABLING	37
MAJOR	37
CREDITS AND EXEMPTIONS	38
ACADEMIC SUPPORT SERVICES	38
ACCOMMODATION FOR STUDENTS WITH DISABILITIES	38
UNIVERSITY REGULATIONS ON PLAGIARISM	39
UNIVERSITY GRADE POINT AVERAGE (GPA) REGULATIONS	43
PRIZES AWARDED ANNUALLY IN THE FACULTY OF SCIENCE AND TECHNOLOGY	47
DEAN'S LIST REGULATIONS	50
GLOSSARY TO THE REGULATIONS	51
FACULTY REGULATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE	53
A. QUALIFICATIONS FOR ADMISSION	53

B. OUTLINE OF THE DEGREE PROGRAMME	53
C. REGISTRATION	54
D. PROGRESS THROUGH THE PROGRAMME	55
E. EXAMINATIONS	55
F. GPA AND CLASS OF DEGREE	56
G. LEAVE OF ABSENCE AND VOLUNTARY WITHDRAWAL	56
H. TIME LIMITS FOR COMPLETION & ENFORCED WITHDRAWALS	57
I. EXEMPTIONS AND TRANSFERS	58
J. AEGROTAT DEGREE	59
INDEX TO REGULATIONS	60
APPENDIX I	62
A. LIST OF APPROVED SCIENCE CAPE / GCE A-LEVEL SUBJECTS	62
B. LIST OF APPROVED SCIENCE CSEC GENERAL PROFICIENCY/GCE O-LEVEL SUBJECTS:	62
APPENDIX II	63
LIST OF MAJORS IN THE UWI SCIENCE FACULTIES	63
APPENDIX III	64
THE FOREIGN LANGUAGE REQUIREMENT	64
FOUNDATION COURSES	64
APPENDIX IV	66
GRADING SYSTEM	66
APPENDIX V	67
OPTIONS IN CONJUNCTION WITH OTHER FACULTIES	67
PROGRAMMES WITH THE FACULTY OF SOCIAL SCIENCES	67
BSc COMPUTER SCIENCE AND ACCOUNTING	68
BSc COMPUTER SCIENCE WITH ACCOUNTING	69
BSc COMPUTER SCIENCE AND ECONOMICS	70
BSc COMPUTER SCIENCE WITH ECONOMICS	71
BSc COMPUTER SCIENCE AND MANAGEMENT	72
BSc COMPUTER SCIENCE WITH MANAGEMENT	73
BSc INFORMATION TECHNOLOGY AND ACCOUNTING	74
BSc INFORMATION TECHNOLOGY WITH ACCOUNTING	75
BSc INFORMATION TECHNOLOGY AND ECONOMICS	76
BSc INFORMATION TECHNOLOGY SCIENCE WITH ECONOMICS	77
BSc INFORMATION TECHNOLOGY AND MANAGEMENT	78
BSc INFORMATION TECHNOLOGY WITH MANAGEMENT	79

BSc MATHEMATICS AND ACCOUNTING	80
BSc MATHEMATICS WITH ACCOUNTING	81
BSc MATHEMATICS AND ECONOMICS	82
BSc MATHEMATICS WITH ECONOMICS	83
SCIENCE AND MANAGEMENT	84
SCIENCE WITH MANAGEMENT	85
BSc BIOCHEMISTRY AND MANAGEMENT	86
BSc BIOCHEMISTRY WITH MANAGEMENT	87
BSc BIOLOGY AND MANAGEMENT	88
BSc BIOLOGY WITH MANAGEMENT	89
BSc CHEMISTRY AND MANAGEMENT	90
BSc CHEMISTRY WITH MANAGEMENT	91
BSc ECOLOGY AND MANAGEMENT	92
BSc ECOLOGY WITH MANAGEMENT	93
BSc ENVIRONMENTAL SCIENCE AND MANAGEMENT	94
BSc ENVIRONMENTAL SCIENCE WITH MANAGEMENT	95
BSc MICROBIOLOGY AND MANAGEMENT	96
BSc MICROBIOLOGY WITH MANAGEMENT	97
BSc ELECTRONICS AND MANAGEMENT	98
BSc ELECTRONICS WITH MANAGEMENT	99
BSc PHYSICS AND MANAGEMENT	100
BSc PHYSICS WITH MANAGEMENT	101
BSc METEOROLOGY AND MANAGEMENT	102
BSc METEOROLOGY WITH MANAGEMENT	103
BSc SCIENCE WITH SUSTAINABLE ENERGY MANAGEMENT	104
PROGRAMMES WITH THE FACULTY OF HUMANITIES & EDUCATION	105
SCIENCE AND PSYCHOLOGY	106
SCIENCE WITH PSYCHOLOGY	107
SCIENCE WITH SPANISH	108
SCIENCE WITH EDUCATION	109
BSc BIOCHEMISTRY AND PSYCHOLOGY	110
BSc BIOCHEMISTRY WITH PSYCHOLOGY	112
BSc BIOLOGY AND PSYCHOLOGY	113
BSc BIOLOGY WITH PSYCHOLOGY	114

BSc CHEMISTRY AND PSYCHOLOGY	115
BSc CHEMISTRY WITH PSYCHOLOGY	116
BSc COMPUTER SCIENCE AND PSYCHOLOGY	117
BSc COMPUTER SCIENCE WITH PSYCHOLOGY	118
BSc ECOLOGY AND PSYCHOLOGY	119
BSc ECOLOGY WITH PSYCHOLOGY	120
BSc ELECTRONICS AND PSYCHOLOGY	121
BSc ELECTRONICS WITH PSYCHOLOGY	122
BSc ENVIRONMENTAL SCIENCE AND PSYCHOLOGY	123
BSc ENVIRONMENTAL SCIENCE WITH PSYCHOLOGY	125
BSc INFORMATION TECHNOLOGY AND PSYCHOLOGY	127
BSc INFORMATION TECHNOLOGY WITH PSYCHOLOGY	128
BSc MATHEMATICS AND PSYCHOLOGY	129
BSc MATHEMATICS WITH PSYCHOLOGY	130
BSc METEOROLOGY AND PSYCHOLOGY	131
BSc METEOROLOGY WITH PSYCHOLOGY	132
BSc MICROBIOLOGY AND PSYCHOLOGY	133
BSc MICROBIOLOGY WITH PSYCHOLOGY	134
BSc PHYSICS AND PSYCHOLOGY	135
BSc PHYSICS WITH PSYCHOLOGY	136
BSc BIOCHEMISTRY WITH EDUCATION	137
BSc BIOLOGY WITH EDUCATION	138
BSc CHEMISTRY WITH EDUCATION	139
BSc COMPUTER SCIENCE WITH EDUCATION	140
BSc ECOLOGY WITH EDUCATION	141
BSc ELECTRONICS WITH EDUCATION	142
BSc ENVIRONMENTAL SCIENCE WITH EDUCATION	143
BSc INFORMATION TECHNOLOGY WITH EDUCATION	145
BSc MATHEMATICS WITH EDUCATION	146
BSc METEOROLOGY WITH EDUCATION	147
BSc MICROBIOLOGY WITH EDUCATION	148
BSc PHYSICS WITH EDUCATION	149
COURSES BY SEMESTER	150
FACULTY OF SCIENCE AND TECHNOLOGY	150

SUSTAINABLE ENERGY MANAGEMENT	151
FACULTY OF SCIENCE AND TECHNOLOGY COURSES	152
LEVEL II FACULTY OF SCIENCE AND TECHNOLOGY COURSES	152
COURSES BY SEMESTER	154
BIOLOGICAL, CHEMICAL AND ENVIRONMENTAL SCIENCES	154
BIOLOGICAL SCIENCES	157
MAJOR IN BIOCHEMISTRY	158
MINOR IN BIOCHEMISTRY	159
MAJOR IN BIOLOGY	160
MINOR IN BIOLOGY	161
DOUBLE MAJOR IN BIOLOGICAL SCIENCES	162
MAJOR IN ECOLOGY	163
MINOR IN ECOLOGY	164
MAJOR IN MICROBIOLOGY	165
MINOR IN MICROBIOLOGY	166
CHEMICAL SCIENCES	167
MAJOR IN CHEMISTRY	167
MINOR IN CHEMISTRY	168
DOUBLE MAJOR IN CHEMISTRY	169
ENVIRONMENTAL SCIENCE	170
MAJOR IN ENVIRONMENTAL SCIENCE	170
MINOR IN ENVIRONMENTAL SCIENCE	171
MINOR IN SUSTAINABILITY OF THE CARIBBEAN	172
FOOD SCIENCE	173
MINOR IN FOOD SCIENCE	173
PROGRAMME STRUCTURE	174
BIOLOGICAL SCIENCES, CHEMICAL SCIENCES, ENVIRONMENTAL SCIENCE, FOOD SCIENCE	174
BSc BIOCHEMISTRY	174
BSc BIOLOGY	175
BSc BIOLOGICAL SCIENCES (DOUBLE)	176
BSc ECOLOGY	177
BSc MICROBIOLOGY	178
BSc CHEMISTRY	179
BSc CHEMISTRY (DOUBLE)	180
BSc BIOCHEMISTRY AND CHEMISTRY	181

BSc BIOLOGY AND CHEMISTRY	182
BSc ENVIRONMENTAL SCIENCE	183
BSc BIOLOGY AND ENVIRONMENTAL SCIENCE	184
BSc CHEMISTRY AND ENVIRONMENTAL SCIENCE	185
BSc CHEMISTRY AND MATHEMATICS	186
BSc CHEMISTRY AND MICROBIOLOGY	187
BSc ECOLOGY AND ENVIRONMENTAL SCIENCE	188
BSc ENVIRONMENTAL SCIENCE AND METEOROLOGY	189
BIOLOGICAL SCIENCE COURSES	190
PRELIMINARY BIOLOGICAL SCIENCE COURSES	190
LEVEL I BIOLOGICAL SCIENCE COURSES	191
LEVEL II BIOLOGICAL SCIENCE COURSES	193
LEVEL III BIOLOGICAL SCIENCE COURSES	202
CHEMICAL SCIENCE COURSES	212
PRELIMINARY CHEMISTRY COURSES	212
LEVEL I CHEMISTRY COURSES	213
LEVEL II CHEMISTRY COURSES	214
LEVEL III CHEMISTRY COURSES	217
ENVIRONMENTAL SCIENCE COURSES	223
LEVEL I ENVIRONMENTAL SCIENCE COURSES	223
LEVEL II ENVIRONMENTAL SCIENCE COURSES	224
LEVEL III ENVIRONMENTAL SCIENCE COURSES	226
LEVEL III SUSTAINABILITY COURSES	230
FOOD SCIENCE COURSES	234
LEVEL II FOOD SCIENCE COURSES	234
LEVEL III FOOD SCIENCE COURSES	235
COURSES BY SEMESTER	236
COMPUTER SCIENCE, ELECTRONICS, MATHEMATICS, PHYSICS AND SOFTWARE ENGINEERING	236
COMPUTER SCIENCE, INFORMATION TECHNOLOGY AND SOFTWARE ENGINEERING	240
MAJOR IN COMPUTER SCIENCE	240
MINOR IN COMPUTER SCIENCE	241
MAJOR IN INFORMATION TECHNOLOGY	242
MINOR IN INFORMATION TECHNOLOGY	243
DOUBLE MAJOR IN COMPUTER SCIENCE	244
MAJOR IN SOFTWARE ENGINEERING (UWICHT)	245

ELECTRONICS	246
MAJOR IN ELECTRONICS	246
<hr/>	
MINOR IN ELECTRONICS:	247
<hr/>	
MATHEMATICS	248
MAJOR IN MATHEMATICS	248
<hr/>	
MINOR IN MATHEMATICS	249
<hr/>	
DOUBLE MAJOR IN MATHEMATICS	250
<hr/>	
PHYSICS	250
MAJOR IN PHYSICS	251
<hr/>	
MINOR IN PHYSICS	252
<hr/>	
PROGRAMME STRUCTURE	253
<hr/>	
COMPUTER SCIENCE, ELECTRONICS, INFORMATION TECHNOLOGY, MATHEMATICS, SOFTWARE ENGINEERING AND PHYSICS	253
<hr/>	
BSc COMPUTER SCIENCE	253
<hr/>	
BSc COMPUTER SCIENCE (DOUBLE)	254
<hr/>	
BSc INFORMATION TECHNOLOGY	255
<hr/>	
BSc ELECTRONICS	256
<hr/>	
BSc MATHEMATICS	257
<hr/>	
BSc MATHEMATICS (DOUBLE)	258
<hr/>	
BSc PHYSICS	259
<hr/>	
BSc SOFTWARE ENGINEERING (UWICIIT)	260
<hr/>	
BSc COMPUTER SCIENCE AND ELECTRONICS	261
<hr/>	
BSc COMPUTER SCIENCE AND MATHEMATICS	262
<hr/>	
BSc COMPUTER SCIENCE AND METEOROLOGY	263
<hr/>	
BSc COMPUTER SCIENCE AND PHYSICS	264
<hr/>	
BSc ELECTRONICS AND INFORMATION TECHNOLOGY	265
<hr/>	
BSc ELECTRONICS AND MATHEMATICS	266
<hr/>	
BSc ELECTRONICS AND METEOROLOGY	267
<hr/>	
BSc ELECTRONICS AND PHYSICS	268
<hr/>	
BSc INFORMATION TECHNOLOGY AND MATHEMATICS	269
<hr/>	
BSc INFORMATION TECHNOLOGY AND METEOROLOGY	270
<hr/>	
BSc INFORMATION TECHNOLOGY AND PHYSICS	271
<hr/>	
BSc MATHEMATICS AND METEOROLOGY	272
<hr/>	
BSc MATHEMATICS AND PHYSICS	273
<hr/>	
COMPUTER SCIENCE & INFORMATION TECHNOLOGY COURSES	274

PRELIMINARY COMPUTER SCIENCE COURSES	274
LEVEL I COMPUTER SCIENCE COURSES	275
LEVEL II COMPUTER SCIENCE COURSES	277
LEVEL III COMPUTER SCIENCE COURSES	280
SOFTWARE ENGINEERING COURSES	288
LEVEL I SOFTWARE ENGINEERING COURSES	288
LEVEL II SOFTWARE ENGINEERING COURSES	291
LEVEL III SOFTWARE ENGINEERING COURSES	295
LEVEL IV SOFTWARE ENGINEERING COURSES	299
ELECTRONICS COURSES	301
LEVEL I ELECTRONICS COURSES	301
LEVEL II ELECTRONICS COURSES	303
LEVEL III ELECTRONICS COURSES	305
MATHEMATICS COURSES	311
PRELIMINARY MATHEMATICS COURSES	311
LEVEL I MATHEMATICS COURSES	313
LEVEL II MATHEMATICS COURSES	317
LEVEL III MATHEMATICS COURSES	322
PHYSICS COURSES	332
PRELIMINARY PHYSICS COURSES	332
LEVEL I PHYSICS COURSES	333
LEVEL II PHYSICS COURSES	335
LEVEL III PHYSICS COURSES	338
COURSES BY SEMESTER	346
METEOROLOGY	346
METEOROLOGY	347
MAJOR IN METEOROLOGY	347
MINOR IN METEOROLOGY	348
PROGRAMME STRUCTURE	349
METEOROLOGY	349
BSc METEOROLOGY	349
BSc METEOROLOGY AND PHYSICS	350
METEOROLOGY COURSES	352
LEVEL I METEOROLOGY COURSES	352
LEVEL II METEOROLOGY COURSES	354
LEVEL III METEOROLOGY COURSES	357

MESSAGE FROM THE DEAN

Welcome to the Faculty of Science and Technology (FST) at The UWI Cave Hill Campus! It is my great pleasure to serve as Faculty Dean and to be able to work with a team of staff who have a strong commitment to the training of a new generation of scientific professionals.

At its core, science probes the essence of things, technology benefits humankind by applying its findings, and our community of researchers – students, faculty, and staff – engage in world-class scientific inquiry, aimed at addressing issues facing not only our region but the world at large. We explore alternative sources of energy, analyse climate variability, champion marine conservation efforts, and interrogate and model the metabolic effects of non-communicable diseases in local populations to create a sustainable environment for future generations to inherit. Furthermore, our technological advancements have opened new horizons in multidisciplinary research, marrying machine learning and artificial intelligence, with health care, forensics, and education.

Our approach to scientific learning is collaborative and experiential, pillared on the understanding that answers to real-world problems require multiple perspectives, teamwork, and hands-on discovery. The Faculty consists of two academic Departments [the Department of Biological and Chemical Sciences (BCS) and the Department of Computer Science, Mathematics and Physics (CMP)], a graduate research centre [The Centre for Resource Management and Environmental Studies (CERMES)] and an affiliate institute [The

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Caribbean Institute for Meteorology and Hydrology (CIMH)] which delivers our Meteorology programme.

We offer several three-year degree programmes: B.Sc. in Biochemistry, Biology, Chemistry, Computer Science, Ecology, Electronics, Environmental Science, Information Technology, Mathematics, Meteorology, Microbiology and Physics; and continue to offer a four-year B.Sc. Software Engineering degree. Joint programmes with the Faculty of Social Sciences (Management, Accounting and Economics) and the Faculty of Humanities and Education (Education and Psychology) also continue to attract considerable interest.

In addition to equipping our students with professional knowledge and practical skills, we aim to endow them with strong communication and problem-solving skills and professionalism appropriate for the workplace. Our cultivated relationships with local industry partners continue to yield professional placements which enable students pursuing any faculty major to gain real-life work experience and build a network of potential employers and industry leaders.

The Faculty has produced graduates who are contributing to the economic growth and prosperity of Barbados and the wider Caribbean region. Moreover, some of our undergraduates choose to pursue advanced studies at the Cave Hill Campus, while others successfully continue their education at global universities, confident in the fact that the fundamental knowledge acquired here will serve them well.

While at Cave Hill we also hope you complement your academic pursuits by engaging with one of the many science clubs and associations. We continue to be proud of the community work of the Cave Hill Environmental Club, and the outreach and mentorship efforts of the Chemistry Society and Computer Science Society. Our newest clubs, the FST Physics Club and the Cave Hill Meteorology Society, are welcomed additions and bring with them a supportive experience grounded in a common love for these science disciplines.

So, whether you are curious about science, or are a current or former member of our community, I invite you to explore our website and social media pages [Facebook: /uwicavehill_fst; Instagram@uwicavehill_fst] to learn more about the science initiatives, programmes and activities currently being pursued in the Faculty. We are a resilient and supportive Faculty endeavouring to improve the world hand in hand through shared knowledge and innovation. Join us on this journey of discovery!

Jeanese Badenock PhD
Dean, Faculty of Science and Technology

ABOUT THIS HANDBOOK

This booklet gives information on programmes and courses offered in the Faculty of Science and Technology at the Cave Hill Campus of The University of the West Indies (Barbados).

This Guide is intended for students entering the Faculty of Science and Technology from academic year 2025-2026. Continuing students must refer to the Faculty Regulations that govern their year of entry available on the Faculty website.

For courses offered at the other UWI campuses, please see Faculty booklets for the:

Mona Campus (Jamaica) at
https://www.mona.uwi.edu/fst/sites/default/files/fpas/uploads/fst_undergraduate_handbook_2024-2025.pdf

St Augustine Campus (Trinidad & Tobago) at
<https://sta.uwi.edu/fst/sites/default/files/fst/documents/UG-FST-Booklet-2024-2025.pdf>

Five Islands Campus (Antigua and Barbuda) at
<https://fiveislands.uwi.edu/handbooks>

The University reserves the right to make such changes to the contents of this publication as may be deemed necessary.

DISCLAIMER

The information in this booklet is accurate at the time of printing. Subsequent publications may therefore reflect updated information. Students should consult their Dean where clarification is required.

DISCLAIMER – PROGRAMMES & COURSES

Notwithstanding the contents of Faculty Handbooks, course outlines or any other course materials provided by the University, the University reserves the right at any time to altogether withdraw or modify programmes or courses as it deems necessary.

DISCLAIMER – PRIZES & AWARDS

In the case where Faculty/Student Prizes or Awards may be listed, the Faculty does not bind itself to award any or all of the listed prizes/awards contained herein or its stated value and reserves the right to modify or altogether remove certain prizes/awards as described in either or both the electronic and printed versions of the Faculty Handbook.

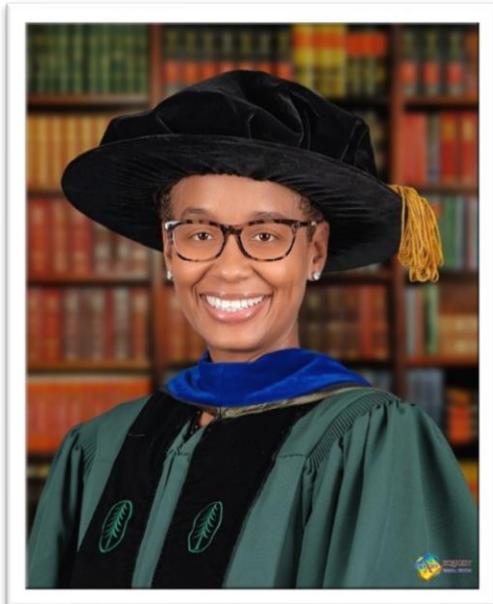
ACADEMIC CALENDAR

SEMESTER I

Semester I Begins	August 24, 2025
Teaching Begins	September 1, 2025
Teaching Ends	November 21, 2025
Review/Study Week	November 23 – November 30, 2025
Examinations	December 1 – 19, 2025
Semester I Ends	December 19, 2025

SEMESTER II

Semester II Begins	January 18, 2026
Teaching Begins	January 19, 2026
Teaching Ends	April 10, 2026
Review/Study Week	April 12 – 19, 2026
Examinations	April 20 – May 8, 2026
Semester II Ends	May 8, 2026


GRADUATION CEREMONIES 2025/2026

Five Islands	October 11, 2025
Cave Hill	October 18, 2025
St. Augustine	October 23 – 25, 2025
Mona	October 31 – November 1, 2025
Global Campus	November 8, 2025

THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026

DEAN AND DEPUTY DEANS

**DEAN, FACULTY OF SCIENCE AND
TECHNOLOGY**

Jeanese Badenock

BSc (UWI), PhD (Dartmouth)

Senior Lecturer in Synthetic Organic

Chemistry

(246) 417-4715

**DEPUTY DEAN,
UNDERGRADUATE AFFAIRS**

Darren Browne

BSc, PhD (UWI)

Lecturer in Biology

417-4328

**DEPUTY DEAN,
GRADUATE STUDIES AND
OUTREACH**

Shane Austin

BSc (UWI), MSc (McGill), PhD
(MUW)

Lecturer in Biochemistry

417-4360

CONTACT US:

Website: <https://www.cavehill.uwi.edu/fst/home.aspx>
Email: fst@cavehill.uwi.edu
Tel: (246) 417-4310-12
Fax: (246) 417-4579

FACULTY OFFICE PROFESSIONAL, ADMINISTRATIVE AND TECHNICAL STAFF

Project Officer

Natasha Corbin

BSc, MSc (UWI), PMP

417-4739

Administrative Assistant

Kay Browne

BSc, MSc (UWI)

417-4311

Administrative Assistant (Projects & Planning)

Lisa-Ann Rollins

BSc, MSc (UWI)

417-4913

Secretary

Shana Odle

LCCI, BSc (UWI)

417-4310

Stenographer/Clerk

Claire-Dawn Cadogan

BSc (UWI)

417-4312

Senior Mechanical Workshop Technician

Glendon Pile

417-4914

Senior Electronics Workshop Technician

Brian Haynes

BSc (UWI)

417-4314

Senior Electronics Workshop Technician

Andrew Phillips

BSc (UWI)

417-4314

CENTRE FOR AGRICULTURAL RESEARCH AND INNOVATION (CAGRI)

Director

Michele Singh

BSc, PhD (UWI)

417-7535

Stenographer Clerk I

Janice Browne

CPS, CAM/CIM, ACG (CGI, UK)

417-7532

DEPARTMENT OF BIOLOGICAL & CHEMICAL SCIENCES

CONTACT US:

Website: <https://www.cavehill.uwi.edu/fst/bcs/home.aspx>

Email: bcs@cavehill.uwi.edu

Tel: (246) 417-4323

Fax: (246) 417-4325

DEPARTMENT ADMINISTRATIVE AND TECHNICAL STAFF

Administrative Assistant

Samantha Z. Alleyne

BA, MA (UWI)

417-4318

Stenographer Clerk II

Toni Russell

417-4324

HEAD OF DEPARTMENT

Thea Scantlebury-Manning

BSc, PhD (Concordia)

Senior Lecturer in Biochemistry

(246) 417-4356/4323

THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026

Senior Laboratory Technician

Kim Ashby

BSc (UWI)

417-4358/59

Laboratory Technician

Danielle Ifill

BSc (UWI)

417-4358/59

Senior Laboratory Technician

Jason Crawford

BSc (UWI)

417-4347

Senior Laboratory Technician

Damian Greaves

BSc (UWI)

417-4194

Senior Laboratory Technician

Kenville Grimes

BSc (UWI), MSc (CAU)

417-4347

Senior Laboratory Technician

Kirk Mayers

BSc (UWI)

417-4358/59

Senior Laboratory Technician

Joanne Simmons-Boyce

BSc, PhD (UWI)

417-4346

Senior Laboratory Technician

Lionel Sobers

BSc (UWI)

417- 4346

Senior Laboratory Technician

Justin Sue

BSc, MPhil (UWI)

417-4346

**CENTRE FOR COMMERCIAL
ANALYTIC SERVICES (CCAS)**

Operations Manager

Nadine Benn-Greaves SCM

EMBA, MSc, BSc (UWI), LSSBB, CFS

417- 4663

ACADEMIC STAFF

BIOLOGICAL SCIENCES

Emerita Professor of Conservation Ecology

Julia Horrocks

BSc (Reading), PhD (UWI)

Lecturer in Ecology

Linton Arneaud

BSc, PhD (UWI)

Phone: 417-4860

Emeritus Professor of Plant Biology

C. M. Sean Carrington

BSc (Edin.), DPhil (York-UK)

Lecturer in Microbiology

Kelly Brathwaite

BSc (UWI), MSc (Strathclyde-UK), PhD

(Nottingham)

417-4354

Senior Lecturer in Biochemistry

Angela Alleyne

BSc, MPhil, PhD (UWI)

417-4330

Lecturer in Biology

Darren Browne

BSc, PhD (UWI)

417-4331

Senior Lecturer in Biochemistry

Thea Scantlebury-Manning

BSc, PhD (Concordia)

417-4356

Lecturer in Microbiology

Bidyut Mohapatra

BSc (OUAT), MSc (Calcutta)

PhD (Kochi)

417-4859

Senior Lecturer in Ecology

Henri Valles

BSc (Oviedo), MSc (UWI-CERMES), PhD

(McGill)

417-4361

Lecturer in Biology

Fradian Murray

BSc, PhD (UWI)

Phone: 417-4328

Lecturer in Biochemistry

Shane Austin

BSc (UWI), MSc (McGill), PhD (MUW)

417-4360

ACADEMIC STAFF

CHEMICAL SCIENCES

Professor of Theoretical and Computational Chemistry

Sean McDowell

BSc (UWI), PhD (Cantab)

417-4352

Professor of Supramolecular Chemistry and Nanotechnology

Avril Williams

BSc, PhD (UWI)

417-4342

Senior Lecturer in Synthetic Organic Chemistry

Jeanese Badenock

BSc (UWI), PhD (Dartmouth)

417-4336

Senior Lecturer in Inorganic Chemistry

Leah Garner-O'Neale

BSc, PhD (UWI)

417-4343

Senior Lecturer in Analytical Chemistry

Srinivasa Popuri

BSc (Nagarjuna), MSc (DAVV), PhD (SVU)

417-4340

Lecturer in Organic Chemistry

Keisha Ellis-Holder

BA, PhD (SUNY Buffalo)

417-4345

Lecturer in Environmental Chemistry

Emma Smith

BSc (Liverpool), MSc (Heriot-Watt), PhD (Plymouth)

417-4838

ENVIRONMENTAL SCIENCE

Senior Lecturer in Atmospheric Science

Isabelle Gouirand

Lic (Aix-Marseille 1), MSc (Burgundy), PhD (Aix-Marseille I)

417-4837

Lecturer in Environmental/Earth Science

Casey Allen

BSc (Utah), MEd (Utah), PhD (Arizona)

417-4321

DEPARTMENT OF COMPUTER SCIENCE, MATHEMATICS & PHYSICS

CONTACT US:

Website: <https://www.cavehill.uwi.edu/fst/cmp/home.aspx>
Email: cmp@cavehill.uwi.edu
Tel: (246) 417-4365
Fax: (246) 438-9198

DEPARTMENT ADMINISTRATIVE AND TECHNICAL STAFF

Administrative Assistant

Wavney Weekes

CIT, BSc (UWI)

417-4365

Stenographer Clerk

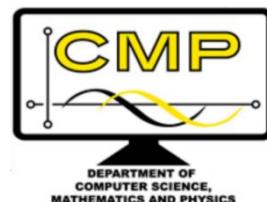
Shari King

HEAD OF DEPARTMENT

Peter Chami

BSc, PhD (UWI)

Senior Lecturer in Mathematics


417-4369

Stenographer Clerk

Rosalind Burke

Diploma (Mohawk College)

417-4943

THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026

Senior Laboratory Technician

David Garner

BSc (UWI)

417- 4378

Senior Lecturer in Computer Science

Mechelle Gittens

BSc (UWI), MSc, PhD (Western)

417-4465

Senior Laboratory Technician

Petra Mings

BSc (UWI)

417- 4964

Senior Lecturer in Computer Science

Paul Walcott

BSc, MPhil (UWI), PhD (City)

417-4372

Senior Laboratory Technician

Jeremy Watson

BSc (UWI)

417- 4964

Lecturer in Computer Science

Adrian Als

BSc, MPhil (UWI), PhD (Sheffield Hallam)

417-4793

ACADEMIC STAFF

COMPUTER SCIENCE

Senior Lecturer in Computer Science

John Charlery

BSc (UWI), Dip. Trop. Met. (Miami)

Adv. Dip. (Comp. Sci), MPhil, PhD (UWI)

417-4363

Lecturer in Computer Science

Thomas Edward

BSc, PhD (UWI)

417-4792

Senior Lecturer in Computer Science

Dwaine Clarke

SB, MEng, PhD (MIT)

417-4333

Lecturer in Computer Science

Jeffrey Elcock

BSc (UWI), MSc (Oxon.), Ph.D. (UWI)

417-4380

Senior Lecturer in Computer Science

Colin Depradine

BEng. (UCL), MSc (ICL), PhD (UWI)

417-4375

Lecturer in Computer Science

Curtis Gittens

BSc (UWI), MSc, PhD (Western)

417-4473

ACADEMIC STAFF

MATHEMATICS

Senior Lecturer in Mathematics

Peter Chami

BSc, PhD (UWI)

417-4369

Senior Lecturer in Physics

Carlos Hunte

BSc, MPhil, PhD (UWI)

417-4382

Senior Lecturer in Mathematics

Bernd Sing

Dipl.-Phys. (Tübingen), PhD (Bielefeld)

417-4737

Senior Lecturer in Physics

Janak Sodha

BSc, MSc, PhD (Manch.)

417-4573

PHYSICS & ELECTRONICS

Emeritus Professor of Physics

L. Leo Moseley

BSc, MSc (UWI), PhD (Wales)

417-4373

Lecturer in Electronics

Ramon Sargeant

BSc, MPhil (UWI), MSc, PhD (King's Col)

417-4374

Emeritus Professor of Condensed Matter

Physics

Upindranath Singh

BSc, MPhil (UWI), MSc, PhD (Delaware)

Professor of Theoretical Physics

Tane Ray

BSc (Illinois), PhD (Boston)

417-4377

THE CARIBBEAN INSTITUTE FOR METEOROLOGY AND HYDROLOGY (CIMH)

Director

David Farrell

BSc (W. Ont.), MSc, PhD (Manitoba)
425-1367

Senior Lecturer

Adrian Trotman

BSc (UWI), MSc (Reading), MPhil (UWI)
425-1362

Lecturer

Shawn Boyce

BSc (UWI), MSc (Newcastle)
425-1362

Senior Lecturer & Coordinator UWI Programme

Kathy-Ann Caesar

BSc (SUNY) MSc (Texas A&M)
425-1362

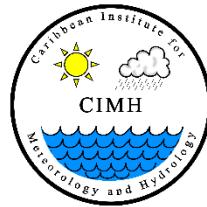
Lecturer

Jonathan Cox

BSc (Cardiff), PhD (Salford-Manchester)
425-1362

CIMH is an Affiliate Institution whose Faculty members teach our degree programme in Meteorology

Website: <https://cimh.edu.bb>


Tel: (246) 425-1362

Fax: (246) 538-0032/1360/1361

Lecturer

Margarette Mayers-Als

BSc, MPhil (UWI)
425-1362

Lecturer

Lawrence Pologne

BSc (UWI), MSc (Florida State), PhD (UWI)
425-1362

Senior Lecturer

Andrea Sealy

BSc (Jackson State), MSc (Penn. State), PhD (Howard)
425-1362

Senior Lecturer

Cedric Van Meerbeeck

MSc (Ghent), PhD (Amsterdam)
425-1362

Lecturer

Ashford Reyes

BSc (UWI), PhD (Howard)
425-1362

CENTRE FOR RESOURCE MANAGEMENT AND ENVIRONMENTAL STUDIES (CERMES)

Website: <https://www.cavehill.uwi.edu/cermes/home.aspx>

E-Mail: nrm@cavehill.uwi.edu

Tel: (246) 417-4339/4316

Fax: (246) 424-4204

CERMES ADMINISTRATIVE, PROFESSIONAL & TECHNICAL STAFF

CERMES DIRECTOR

Professor David Yawson

BSc (Cape Coast)

MSc (Wageningen),

PhD (Dundee)

Professor of Agrifood Systems and

Environmental Resilience

Administrative Assistant

Shakita Taylor

BA, MA (UWI)

Stenographer/Clerk (Secretary)

Mia Clarke

BA (UWI)

417-4317

Project Assistant

Maria Pena

BSc, MSc (UWI)

Coordinator – Graduate Programmes

Neetha Selliah

BSc (Surrey), MSc (UWI)

417-4568

ACADEMIC STAFF

Senior IT Technician

Dale Benskin

BSc (UWI)

417-4313

Research Assistant

Khalil Greene

MSc (UWI)

417-4827

Laboratory Technician

Joseph Weekes

BSc (UWI), MSc (UWI)

417-4567

Emeritus Professor

Robin Mahon

BSc (UWI), MSc, PhD (Guelph)

Emerita Professor of Marine Ecology and
Fisheries

Hazel Oxenford

BSc (Exeter), PhD (UWI)

417-4571

Senior Lecturer in Fisheries

Patrick McConney

BSc (Bangor), M.ES. (Dalhousie),

PhD (UBC)

417-4725

Professor (Agrifood Systems and
Environmental Resilience)

David Yawson

BSc (Cape Coast), MSc (Wageningen), PhD
(Dundee)

417-4830

Senior Lecturer in Disaster and Tourism
Management

Janice Cumberbatch

BSc (UWI), MSc (York), PhD (UWI)

417-4569

Lecturer in Water Resources Management

Karl Payne

BSc, MPhil (UWI), MEng (UoT), PhD (USF)

417-4829

PRINCIPAL OFFICERS OF THE UNIVERSITY OF THE WEST INDIES

Chancellor

The Most Honourable Dodridge D. Miller, FB, FCCA, MBA, LLM, LLD (Hon) UWI

Vice-Chancellor

Sir Hilary Beckles, BA, PhD *Hull*, Hon DLitt *Hull*, Hon DLitt *Knust*, Hon DLitt *Univ of Glasgow*,
Hon DLitt *Brock*, Hon DHL *UVI*, Hon DLitt *Univ of Joh*

Chairpersons of Campus Councils

Trisha S. M Tannis, BSc (Hons), CGA, CPA, FCA, FCG – **Cave Hill**

Aziz Fares Hadeed, CBE – **Five Islands**

Her Excellency June Soomer, BA, PhD *UVI* – **Global Campus**

Dennis Cohen, FCA, FCCA, BSc UWI – **Mona**

Robert Riley, LLB, BSc, LLD (Hon) UWI – **St. Augustine**

Pro Vice-Chancellors and Campus Principals

R. Clive Landis, BSc *Birmingham*, MSc, PhD *Loyola* – **Cave Hill**

Justin Robinson, BSc *UVI*, MSc *FIU*, PhD *Manc* – **Five Islands Campus**

Francis Severin, BA, MSc, PhD *UVI* – **Global Campus**

Densil Williams, BSc, MSc *UVI*, PhD *Manc* – **Mona**

Rose-Marie Antoine, LLB *UVI*, LLM *Camb*, DPhil *Oxon* – **St. Augustine**

Pro Vice-Chancellors

Justin Robinson, BSc *UVI*, MSc *FIU*, PhD *Manc* – Academic-Industry, Partnership & Planning

Aldrie Henry-Lee, BA, MSc, PhD *UVI* – Graduate Studies & Research

Canute Thompson, BA *UVI*; MA *Eden*, PhD *UVI* – Undergraduate Studies

Sandrea Maynard, LLB (Hons) LLM, SFHEA, PgCHE – Global Affairs

THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026

Deputy Campus Principals

Winston Moore, BSc *UWI*, MSc *Warwick*, PhD *Surrey* – **Cave Hill**

Emily Dick-Forde, BSc *UWI*, MPhil *Camb*, PhD, FCPA, FCMA – **Global Campus**

Tomlin Paul, MBBS, MPH *UWI*, DFPHM (UK), FAcadMEd (UK) – **Mona**

Derek Chadee, BSc, PhD *UWI* – **St. Augustine**

University Registrar

Maurice D. Smith, JP, BSc *NCU*, MSc *NSU*, EdD *Howard*, CPFEd

University Bursar

Andrea McNish, BSc, MSc *UWI*, FCCA

IMPORTANT NAMES AND NUMBERS

STUDENT AFFAIRS

Tel: (246) 417-4120

Fax: (246) 438-9145

ADMISSIONS:

Email address:

admissions@cavehill.uwi.edu

Temporary Assistant Registrar

Mrs. Carol Jordan, BSc, MSc 417-4119

Administrative Assistant

Ms. Kathy-Ann Long, BA 417-4122

Science & Technology Faculty Clerk

Ms. Annmaria Jordan, BSc, MSc 417-4114

Secretary

Ms. Kathy-Ann Watson 417-4120

EXAMINATIONS:

Email address:

exams@cavehill.uwi.edu

Assistant Registrar

Ms. Orwyn Herbert BSc, MSc 417-4133

Administrative Assistant

Mrs. Jacqueline Griffith 417-4139

Administrative Assistant

Ms. Ingrid Lashley 417-4135

Stenographer/Clerk

TBA 417-4134

RECORDS:

Email address:

records@cavehill.uwi.edu

Administrative Assistant

Ms. Lisa Phillips Hill, BSc 417-4140

Stenographer/Clerk

Ms. Whitley Parris-Harper 417-4148

SCHOOL FOR GRADUATE STUDIES AND RESEARCH:

Email address:

gradstudies@cavehill.uwi.edu

Senior Assistant Registrar

Mr. Owen Ellis, Cert (PM), BSc, MSc 417-4902

Administrative Assistant

Ms. Karene Holligan 417-4907

Science & Technology Faculty Clerk

Miss Tanya Taylor, BSc 417-4905

ABOUT THE UWI AND THE FACULTY

The University of the West Indies (UWI) is a regional and international institution primarily serving the needs of the Commonwealth Caribbean. Established in 1948 at Mona, Jamaica, as a college in special relationship with the University of London, it received full university status in 1962, as an independent degree granting institution. In 1960, a second campus was established at St Augustine, Trinidad, and in 1963 teaching started in Barbados, first at a temporary site at the Bridgetown Port and then at the Cave Hill Campus. Sciences have been taught at the Cave Hill Campus of the University of the West Indies from its inception. The Faculty was formerly known as the Faculty of Natural Sciences and later the Faculty of Pure and Applied Sciences before deciding that the name Faculty of Science and Technology (FST) best represented the degrees being offered. Our full-time academic staff are mainly Caribbean nationals, but we are also very much an international Faculty with about one third of our lecturers drawn from countries far and wide. Our degree programmes are well-respected regionally and internationally with many of our graduates working or pursuing further studies overseas.

The Faculty comprises of three sections:

- Department of Biological & Chemical Sciences (BCS) – undergraduate & graduate programmes
- Department of Computer Science, Mathematics & Physics (CMP) – undergraduate & graduate programmes
- Centre for Resource Management and Environmental Studies (CERMES) – graduate programmes

In the undergraduate BSc programme, courses are offered in all major scientific disciplines. Through collaboration with the Caribbean Institute for Meteorology and Hydrology (CIMH), the Faculty offers a BSc in meteorology. Students may major in one or two disciplines and current enrolment in the Faculty is approximately one thousand undergraduates, most of whom are full-time students. Science graduates may register for the research degrees of M.Phil. and Ph.D. under the supervision of a member of the Academic Staff. The Faculty also offers MSc programmes in various fields. CERMES offers a MSc in Natural Resource and Environmental Management, and more recently a MSc in Sustainable Energy Management.

The Department of CMP offers a series of taught Masters programmes from the discipline of Computer Sciences, under the suite of the MSc IT with specializations in the areas of Enterprise Systems, Mobile Application Development and Web Development, and Postgraduate Diploma IT. The Department of BCS offers a taught Masters and Diploma in Biosafety. The research interests in the Faculty are diverse, addressing both fundamental questions in Science as well as finding scientific solutions to real life problems facing the Caribbean region and its people. Faculty members also constitute an unmatched source of expertise to Governments, Non-Governmental Organisations and the Private sector in providing technical advice.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

The Centre for Commercial Analytical Services (CCAS) and the Centre for Agricultural Research and Innovation (CAGRI) have been recently established in the Faculty. The CCAS is envisioned as an agile, modern analytical testing facility that is ready and able to service the industrial sector as well as the individual through fast turnaround times at reasonable prices allowing for quick and effective decision-making. The CAGRI was renamed from the Centre for Food Security and Entrepreneurship (CFSE) and has been completely rebranded with the purpose of developing, testing, and demonstrating innovations in agriculture. In addition, CAGRI is responsible for successfully managing multi-million-dollar Dukes Agri-industrial Park which is expected to be open to the public in 2025.

QUALIFICATIONS

Before registration, and before beginning the courses leading to the degree in the Faculty of Science and Technology:

1. In order to be admitted to the **three-year degree programme**, candidates must satisfy the University requirements for Matriculation (see [The UWI University Regulations for Students](#)) and have passed Mathematics and two approved science subjects at CSEC General Proficiency level at Grades I, II or, since 1998, Grade III (or equivalent qualification) and
 - a. Have obtained passes in four Units at CAPE, at least two Units in one subject, all at Grade V or better (or equivalent qualification). One of the CAPE subjects must be an Approved Science subject.or
 - (b) Have an approved Associate Degree with a GPA of 2.5 (or equivalent qualification) or higher, from a Tertiary Level Institution.
(N.B. Candidates must also satisfy Departmental Requirements).

2. In order to be admitted to the **four-year degree programme**, candidates must satisfy the University requirements for Matriculation (see [The UWI University Regulations for Students](#)) and have passed Elementary Mathematics at CSEC General Proficiency level at Grades I, II or, since 1998, Grade III (or equivalent qualification).

APPLICATION PROCEDURE

Applications for entry to all Faculties must be received by the stated deadline (usually on or before January 10 of the year in which the applicant wishes to enter) and should be accompanied by:

- ID card, Birth Certificate and Marriage Certificate (where your name has been changed through marriage)
- Legal Affidavit or Deed Poll if your name is different from that on the Birth Certificate
- Academic certificates (GCE, CXC, CAPE, CSEC) and professional certificates/diplomas
- Grade Slips (These are only accepted in a case where the certificate is not yet available)
- Curriculum Vitae (Diploma in Education applicants)
- Official Transcripts - These must be sent directly from the granting institution (Not applicable to Local Secondary Schools).
- Receipt or bank draft for application fees.

Students are required to apply on-line at <https://www.cavehill.uwi.edu/admissions/apply-now.aspx>.

THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026

Table 1:

Minimum CAPE (or equivalent) qualifications for entry to 3-Year BSc Science Programmes

BSc Major in	Required CAPE Passes
Biochemistry	Biology & Chemistry
Biology¹	(Biology or Environmental Science) & Chemistry
Ecology	(Biology or Environmental Science) & Chemistry
Microbiology	(Biology or Environmental Science) & Chemistry
Environmental Science	Two science subjects relevant to course of study**
Chemistry¹	Chemistry & another subject
Computer Science¹	Mathematics [‡] & another subject
Information Technology (IT)	Mathematics [‡] & another subject
Software Engineering	Mathematics [‡] & another subject
Mathematics¹	Pure Mathematics & another subject
Electronics	Mathematics [‡] & Physics ^{##}
Physics	Pure Mathematics & Physics
Meteorology	Mathematics [‡] & Physics
BSc Options^{2,3}	Required CAPE Passes
Computer Science (or IT) & Accounting	Mathematics [‡] & another subject
Computer Science (or IT) & Economics	Mathematics [‡] & another subject
Computer Science (or IT) & Management	Mathematics [‡] & another subject
Mathematics & Economics	Pure Mathematics & another subject
Mathematics & Accounting	Pure Mathematics & another subject
Science & Management	Requirements as for the Science Major [◊]
Science & Psychology	Requirements as for the Science Major

¹ Double Major also offered.

² Numbers taking these Options are restricted.

³The Faculty can be consulted for any other combinations.

**Two of Approved Science CAPES; or BCC Associate Degree in Approved Science

[‡]CAPE Pure Mathematics Units I and II are strongly recommended from September 2025. Those already completing Unit 2 of CAPE Mathematics in the 2025-26 academic year will be considered with the necessary level of passing grade.

^{##}Physics may be replaced with another approved CAPE subject. However, CSEC Physics will then be required.

[◊]Biochemistry/Biology/Chemistry/Ecology/Environmental Science/Microbiology and Management requires the same entrance requirements as the respective science major only. Electronics/Physics and Management also requires Mathematics.

PROFICIENCY TEST FOR NEW STUDENTS

All applicants to the University are required to take a proficiency test in English. The application form for the test is available online at <http://www.cavehill.uwi.edu/fhe/studyhumanities/english-proficiency-test.aspx>. This form should be returned/submitted at the same time as the normal application form, to the Admissions Section, Student Affairs at Cave Hill, Mona or St. Augustine, or to Resident Tutors or University Representatives in Non-Campus Countries.

The test is normally scheduled to take place in March preceding the start of the academic year. Students who have obtained one of the following are exempted from taking the test:

- Grade 1 in CSEC General Proficiency in English A
- Grade 1 or 2 in the CAPE Communication Studies
- Grade A in the Cambridge GCE O' Level English Language
- Grade A or B in the Alternative Ordinary (AO) General Paper
- Graduates of the Barbados Community College (BCC) receiving Grade B or higher in the course CORE 100 English and Communication.

Those who pass or are exempted from the test do one of the Level I English Language Foundation courses: (1) FOUN1006 or FOUN1008 offered by the Faculty of Humanities and Education.

Those who fail or did not take the test (and do not possess one of the exemptions listed above) are required to pass the remedial course FOUN0100: Fundamentals of Written English and then to do the two Level I English Language Foundation courses. FOUN0100 is coordinated by the Academic Literacies Unit of the Faculty of Humanities and Education and is presently offered in both semesters for a fee of BBD\$500 and in the Summer School for the regular Summer School fee.

INTERNATIONAL EXCHANGE/STUDY

The exchange programme allows students to spend one or two semesters abroad at overseas universities in order to broaden their experience, understanding and perception. Such exchanges typically take place in Year 2 of the BSc degree and the application deadline is December 1st of the year prior to the exchange. UWI students, while at exchange Universities, continue as regular full-time students of the University of the West Indies. They pay UWI tuition and other fees and pursue matching and approved courses for credit. Credits earned abroad are transferred to UWI and applied to regular Faculty degree requirements in accordance with Regulation 38. For study abroad the requirements may vary. Interested students are advised to consult the International Exchange/ Study Abroad brochure available from the Admissions Section of Student Affairs. This contains a current list of universities with which The UWI has entered into cooperative arrangements for study exchanges.

Programmes of study must be pre-approved by the Dean.

DEFINITIONS OF KEY TERMS

Academic Year: The academic year normally runs from August until May.

Academic Advising: All students are assigned an Academic Advisor on entry to the Faculty, who is there to provide guidance in relation to your academic career. The name of your Academic Advisor appears on your CHOL account.

Academic Warning: A student whose GPA falls below 2.0 in any one semester will be placed on "academic warning".

Award of Honours: Awards assessed on the student's performance in all credits gained from Level II and Level III courses.

Change of Major: Students are allowed to change their current major at the beginning of the Academic Year. Only Final Year students are allowed to change their major at the beginning of the semester in which they are expected to graduate.

Co-Curricular Courses/Credits: Courses offered through the Office of Student Services, designed to complement your programme. Students are eligible to count no more than 3 co-curricular credits towards their degree.

Core Courses: Courses that are compulsory in the degree programme concerned.

Course Code: A letter number and numeric combination used to identify a course e.g., COMP1205. The letter part of the code identifies the subject area (e.g., BIOL – Biology; COMP – Computer Science), while the first digit of the numerical part of

the code identifies the level of the course (e.g., 1205 - Level 1; 2000 – Level II; 3000 – Level III).

Credit/Credit Hours: The University's way of measuring work towards a degree. To graduate, a student must complete a minimum number of credits/credit hours.

Credits: The weighting given to a course.

Discipline: A field of study, inquiry, research or branch of knowledge, taught and researched at the college or university level.

Electives: Optional courses in the degree programme from which students can freely select.

Exemptions and Credits: A student may be granted credits for courses completed and passed in other UWI programmes or at other affiliated institutions.

Exemptions without Credit: Exemptions granted as above but not for credit. In this case, students will be required to replace the exempted course with another course for obtain the relevant credits.

Full-Time Registration: A student who is fully matriculated and therefore registered for not more than 18 and not less than 12 credits per semester. Full-time students should not be in full-time employment.

Grade Point Average (GPA): GPA is the average obtained by dividing the total grade points earned by the total quality of hours for which the student is registered, exclusive of foundation courses, audited courses and courses taken for preliminary credits.

Leave of Absence: Students can apply to the Faculty for a Leave of Absence from classes for a semester or an academic year. Only 4 semesters of leave are allowed.

Matriculation: The process of enrolment into the University.

Major: An area of study that requires a specific number of credits (30), including prescribed courses from Levels II and III from a single discipline.

Minor: A specific number of credits, usually 15, including prescribed courses from Levels II and III from a single discipline.

Oral/Written Supplemental: Students in their final year who have failed up to two courses needed to graduate with at least 45% may be eligible for an oral examination in the courses.

Overrides: During the registration add/drop period, the override feature allows students to apply online to register for a course for which they have encountered registration issues and therefore have received an error prompt. Students can request overrides for full classes, course clashes, missing prerequisite, etc. The requests are routed to the relevant department which has the discretion to grant overrides.

Part-Time Registration: A student who is admitted based on CSEC qualifications only must be registered as a Part Time student. Part-time students shall register for no more than 11 credits per semester.

Plagiarism: A form of cheating and is a serious offence. See section on [University Regulations on Plagiarism](#).

Pre-requisite: A course that must be passed before enrolment in a desired course.

Programme: A sequence of courses (designed to achieve pedagogical goals), the taking of which is governed by certain regulations and the satisfactory completion of a minimum of which (determined by such regulations) makes a candidate eligible for the award of a degree/diploma/certificate.

Required to Withdraw: Students will be required to withdraw from the Faculty if, after receiving a warning letter concerning their poor academic performance in one semester, do not improve and have a GPA of less than 2.00 in the following semester.

Semester: Half-year term in the academic year, normally a 13-week period of instruction.

Summer School: Optional period of study governed by Summer School Regulations. This period of study is normally held from May to July each year. The courses offered in the Summer Session are not always the same from year to year.

- Attend lectures, listen, and make notes.
- After each lecture, summarize the major ideas and concepts within 24 hours of class.
- Read the suggested readings in the required text and annotate your class handouts.
- Seek out assistance, individually or in teams where permitted.
- Spend a few minutes each day practicing questions to avoid being overwhelmed before an exam.

3 credit credits

national

GENERAL STUDENT INFORMATION

ACADEMIC ADVISORS

Academic counselling is available for all students within the Faculty. Whether you need to discuss your academic progress, are experiencing difficulty in your academic programme, need help with your degree requirements, course selection etc., an Academic Advisor is available to assist you.

Each student is assigned an Academic Advisor for the duration of his/her undergraduate career and is advised to meet with this Advisor at least once per semester. Students should contact their Department or check their CHOL account to learn who their Academic Advisor is and to arrange a meeting as early as possible.

COURSES AND TIMETABLING

The Faculty reserves the right to withdraw or to add courses as may be necessary or desirable but, except in cases of extreme emergency or difficulty, no course will be added or withdrawn during an academic year. The Faculty does not guarantee that all courses listed in the following pages will be available this academic year. Additionally, timetabling constraints may impose restrictions on the combinations of courses permissible. Students are not permitted to register for courses that clash on the timetable.

COURSE REGISTRATION

Students are required to register for courses each semester that make up their declared major. They may also register for elective courses provided these can be accessed. See Regulations for the [number of credits](#) that may be taken per semester/academic year.

A maximum of one (1) co-curricular course (3 credits) at either level II or III can count towards the overall number of courses for the degree. However, co-curricular courses are awarded on a pass/fail basis and are not used in calculating the class of degree.

MAJOR

Students admitted to the Faculty must declare a Major, or a Double Major. A Major is a student's principal subject area of study: for example, if a student is pursuing a degree in Biology, then Biology is their "Major". This Major (30 credits taken from level 2/3) must be declared from among the following subjects offered by the Department of Biological and Chemical Sciences: Biochemistry, Biology, Chemistry, Ecology, Environmental Science and Microbiology, or from among the following subjects offered by the Department of Computer Science, Mathematics and Physics: Computer Science, Electronics, Information Technology, Mathematics, Physics, Software Engineering (in association with UWICCIIT) or from Meteorology (in association with CIMH). Students may also declare a

THE FACULTY OF SCIENCE AND TECHNOLOGY UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026

Double Major in two subjects offered in the Faculty of Science and Technology.

CREDITS AND EXEMPTIONS

Credits/Exemptions may be awarded for courses already passed at this or another institution. Undergraduate students applying for credit/exemptions should make such requests through their respective Deans or the Office of Student Affairs – Admission. An official transcript is required for assessment by the appropriate authority. Requests for Credits/Exemptions must be made before the start of registration.

ACADEMIC SUPPORT SERVICES

Academic support services and workshops, offered by the Office of Student Services and Development (OSSD) are available to all undergraduate and graduate students of The University of the West Indies, Cave Hill Campus.

The Academic Support Drop-in Clinic offers one-on-one and group consultations by appointment using an online scheduling system <http://www.tinyurl.com/OSSBookings>. Students benefit from support from an Academic Support Specialist in the areas of their concerns as follows:

- Time management
- Procrastination
- Organisation
- Academic study skills
- Revision strategies
- Motivation
- Presentation skills
- Effective notetaking
- Group work

Practical interventions include coaching on:

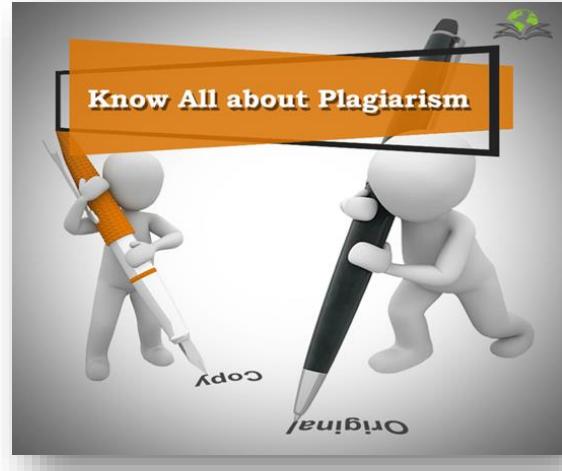
- Encouragement to utilize Lecturer Office Hours where it is felt that specific feedback on academic performance is required and clarity on coursework.
- Referral to other Campus resources/services.

To access the academic support services offered by the OSSD, call 417-4165 or schedule an appointment via www.tinyurl.com/OSSBookings or www.cavehill.uwi.edu/studentservices.

ACCOMMODATION FOR STUDENTS WITH DISABILITIES

The UWI Cave Hill Student Disability Policy promotes “an inclusive campus that enables the productive participation of all students regardless of disability” and calls for the provision of accommodations for students with disabilities. Students with disabilities may receive reasonable accommodations to enable them to participate in all aspects of campus life. Click [here](#) to download the Disability Policy.

“Reasonable accommodation is a modification to the delivery of instruction and method of assessment for a course, program, facility or service that seeks to eliminate or minimizes disability-related barriers. It


aims to facilitate the student's learning experience and for the instructor to fairly evaluate the student's progress without interference from the disability."

All students are required to meet approved standards of competency in all aspects of their work, and students with disabilities are no exception. The provision of an accommodation does not mean compromising the content, quality or level of instruction.

PRELIMINARY STEPS:

- Before coming to Cave Hill Campus find out about Services to Support persons with disabilities.
- Peruse the UWI website to find out about the services being offered, to support students' success.
- Visit the Office of Student Services and speak to the Disability Services Coordinator (DSC) to discuss your functional limitations and concerns. All information is kept confidential.
- Complete the Application for Accommodation for Persons with Disabilities ([Click here](#)) and submit it to the Office of Student Services in a sealed envelope. You are required to provide documentation of your disability from a certified services provider, e.g., doctor, educational psychologist, occupational therapist.
- Register with the Student Health Clinic (SHC). Complete the online registration form: www.cavehill.uwi.edu/studentservices/health-wellness/health-clinic/registration.aspx.
- Complete Student Intake Questionnaire. This form consists of a series of questions that provide historical information related to their functional limitations and accommodations. This form will be given when you meet with the DSC to discuss accommodations.

UNIVERSITY REGULATIONS ON PLAGIARISM

(First Degrees, Diplomas and Certificates)

APPLICATION OF THESE REGULATIONS

1. These Regulations apply to the presentation of work by a student for evaluation, whether or not for credit, but do not apply to invigilated written examinations.
2. In these Regulations, "plagiarism" means the unacknowledged and unjustified use of the words, ideas or creations of another, including unjustified unacknowledged quotation and unjustified unattributed borrowing;

"Level 1 plagiarism" means plagiarism which does not meet the definition of Level 2 plagiarism;

"Level 2 plagiarism" means plagiarism undertaken with the intention of passing off as original work by the plagiariser work done by another person or persons.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

3. What may otherwise meet the definition of plagiarism may be justified for the purposes of Regulation 2 where the particular unacknowledged use of the words, ideas and creations of another is by the standards of the relevant academic discipline a function of part or all of the object of the work for evaluation whether or not for credit, for example:
 - a. The unacknowledged use is required for conformity with presentation standards;
 - b. The task set or undertaken is one of translation of the work of another into a different language or format;
 - c. The task set or undertaken requires producing a result by teamwork for joint credit regardless of the level of individual contribution;
 - d. The task set or undertaken requires extensive adaptation of models within a time period of such brevity as to exclude extensive attribution;
 - e. The task set or undertaken requires the use of an artificial language, such as is the case with computer programming, where the use of unoriginal verbal formulae is essential.
4. It is not a justification under Regulations 2 and 3 for the unacknowledged use of the words, ideas and creations of another that the user enjoys the right of use of those words, ideas and creations as a matter of intellectual property.

OTHER DEFINITIONS

5. In these Regulations:
“Chairman” means the Chairman of the relevant Campus Committee on Examinations;
“Examination Regulations” means the Examination and other forms of Assessment Regulations for First Degrees Associate Degrees Diplomas and Certificates of the University;
“set of facts” means a fact or combination of facts.

EVIDENCE OF PLAGIARISM

6. In order to constitute evidence of plagiarism under these Regulations, there shall be identified as a minimum the passage or passages in the student’s work which are considered to have been plagiarised and the passage or passages from which the passages in the student’s work are considered to have been taken.

STUDENT STATEMENT ON PLAGIARISM

7. When a student submits for examination work under Regulation 1, the student shall sign a statement, in such form as the Campus Registrar may prescribe, that as far as possible the work submitted is free of plagiarism including unattributed quotation or paraphrase of the work of another except where justified under Regulation 3.
8. Quotation or paraphrase is attributed for the purpose of Regulation 7 if the writer has indicated using conventions appropriate to the discipline that the work is not the writer’s own.
9. The University is not prohibited from proceeding with a charge of plagiarism where there is no statement as prescribed under Regulation 7.

ELECTRONIC VETTING FOR PLAGIARISM

10. The results of any electronic vetting although capable, where the requirements of Regulation 7 are satisfied, of constituting evidence under these Regulations, are not thereby conclusive of any question as to whether or not plagiarism exists.

LEVEL 1 PLAGIARISM

11. In work submitted for examination where the Examiner is satisfied that Level 1 plagiarism has been committed, he/she shall penalise the student by reducing by no more than 10%, the mark which would otherwise have been awarded, taking into account any relevant Faculty regulations.

LEVEL 2 PLAGIARISM

12. Where an examiner has evidence of Level 2 plagiarism in the material being examined, that examiner shall report it to the Head of Department or the Dean and may at any time provide the Registrar with a copy of that report. In cases where the examiner and the Dean are one and the same, the report shall be referred to the Head of the Department and also to the Campus Registrar.
13. Where any other person who in the course of duty sees material being examined which he or she believes is evidence of Level 2 plagiarism that other person may report it to the Head of Department or the Dean and may at any time report it to the Campus Registrar who shall take such action as may be appropriate.
14. Where a Dean or Head of Department receives a report either under Regulation 12 or 13, the Dean or Head of Department, as the case may be, shall
 - a. where in concurrence with the report's identification of evidence of Level 2 plagiarism, report the matter to the Campus Registrar; or
 - b. where not concurring in the identification of evidence of plagiarism, reply to the examiner declining to proceed further on the report; or
 - c. where concluding that there is evidence of Level 1 plagiarism, reply to the examiner

indicating that conclusion and the Examiner shall proceed as under Regulation 11.

15. Where a report is made to the Campus Registrar under Regulation 14a or 16, the Campus Registrar shall lay a charge and refer the matter to the Campus Committee on Examinations.
16. Where the Campus Registrar receives a report alleging Level 2 plagiarism from the Examiner or any other person except the Dean or Head of Department, the Campus Registrar shall refer the matter to a senior academic to determine whether there is sufficient evidence to ground a charge of plagiarism and where such evidence is found, the Campus Registrar shall proceed as under Regulation 15.
17. Where the matter has been referred to the Campus Committee on Examinations pursuant to Regulation 15, the proceedings under these Regulations prevail, over any other disciplinary proceedings within the University initiated against the student based on the same facts and, without prejudice to Regulation 21, any other such disciplinary proceedings shall be stayed, subject to being reopened.
18. If the Campus Committee on Examinations is satisfied, after holding a hearing, that the student has committed Level 2 plagiarism, it shall in making a determination on the severity of the penalty take into consideration:
 - a. the circumstances of the particular case;
 - b. the seniority of the student; and
 - c. whether this is the first or a repeated incidence of Level 2 plagiarism.
19. Where the Campus Committee is of the view that the appropriate penalty for an offence of Level 2 plagiarism is for the student to be:
 - a. awarded a fail mark;
 - b. excluded from some or all further examinations of the University for such period as it may determine;
 - c. be dismissed from the University, it shall make such recommendation to the Academic Board.

**CLEARANCE ON A CHARGE OF LEVEL 2
PLAGIARISM**

20. A determination of the Campus Committee on Examinations that Level 2 plagiarism has not been found will be reported to the Campus Registrar who shall refer it to the Examiner and notify the student. Where the Committee has not identified Level 2 but has identified Level 1, it shall be reported to the Campus Registrar who shall refer it to the examiner.

LEVEL 2 PLAGIARISM: APPEAL TO THE SENATE

21. A student may appeal to the Senate from any decision against him or her on a charge of plagiarism made by Academic Board.

DELEGATION BY DEAN OR HEAD OF DEPARTMENT

22. The Dean or Head of Department, as the case may be, may generally or in a particular instance delegate that officer's functions under these Regulations.

CONFLICT OF INTEREST DISQUALIFICATION

23. Any person who has at any time been an examiner of work or been involved in procedures for laying charges in relation to which an issue of plagiarism is being considered under these Regulations shall withdraw from performing any functions under these Regulations other than those of supervisor and examiner.

UNIVERSITY GRADE POINT AVERAGE (GPA) REGULATIONS

1. These Regulations will apply to all new students entering the system in August 2014 to pursue first degrees, associate degrees, diplomas and certificates. These Regulations will also apply to all other students, who entered the system prior to the 2014/2015 academic year, to pursue first degrees, associate degrees, diplomas and certificates except for those students in the Faculty of Engineering. Students in the Faculty of Engineering who entered a programme prior to academic year 2014/15 will be governed by the GPA regulations dated 2011 until the end of the academic year 2015/16

2. In order to be eligible for the award of a First Degree, all students shall have a minimum GPA of 2.00.

3. (i) For purposes of these Regulations, the following meanings shall apply, except where the context otherwise requires:

(a) **CREDIT HOURS EARNED:**

'Credit hours earned' means the credits for each course that count toward the degree requirement and for which a passing grade is obtained.

(b) **QUALITY HOURS:**

'Quality hours' means the credits for each course that is included in the GPA calculation. Quality hours shall be assigned even when a grade of F1, F2 or F3 is obtained in a course. Courses that are not counted in the determination of the GPA shall be assigned zero quality hours.

(c) **QUALITY POINTS:**

'Quality points' means the numerical value assigned to the relevant letter grade earned.

(ii) For the purposes of these Regulations:

(a) **LEVEL I, II AND III COURSES:**

Levels I, II and III courses are courses so designated by the Board for Undergraduate Studies.

(b) **GRADE POINTS:**

Grade points are determined by multiplying the quality hours by the quality points for a course.

(c) **GRADE POINT AVERAGE (GPA):**

Grade Point Average is the average obtained by dividing the total grade points earned by the total quality hours for which the student has registered for any stated period of time, excluding courses taken on a pass/fail basis, audited courses, preliminary courses, not for credit courses and courses for which the designation I or IP is awarded under Regulation 6(iv).

(d) **WEIGHTED GRADE POINT AVERAGE:**

Weighted Grade Point Average is the average determined by applying appropriate weights for Levels I, II, and III courses to the grade points and the quality hours used in determining grade point average as set out at Regulation 3(ii)(c) above.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

(e) CREDIT HOURS:

The credit values for courses, as well as for projects, laboratory sessions, foreign language classes or other contact hours, shall be determined by the respective Faculty Board and approved by the Board for Undergraduate Studies or in the case of the Open Campus, recommended by Academic Board and approved by the Board for Undergraduate Studies.

4. (i) The class of degree shall be awarded on the basis of the Weighted GPA as set out in these Regulations.
- (ii) In determining the Weighted GPA, the weights to be used for each Level I, II and III course shall be as prescribed in Faculty Regulations.
- (iii) Except for the purpose of determining the class of degree the term GPA in these Regulations shall mean the GPA as defined at Regulation 3(ii)(c) above.
5. First Degrees awarded by the University except as stated in sub-clauses i and ii are as follows:

- **First Class Honours (Weighted GPA 3.60 and Above)**
- **Upper Second Class Honours (Weighted GPA 3.00 – 3.59)**
- **Lower Second Class Honours (Weighted GPA 2.50– 2.99)**
- **Pass (Weighted GPA 2.00-2.49)**

(i) The degree of Bachelor of Medical Sciences shall be classified as follows:

Distinction GPA 3.70 and Above
Honours GPA 3.30 – 3.69
Pass GPA 2.00 – 3.29

(ii) The Degrees of MBBS, DDS and DVM shall be classified as follows:

Distinction
Honours
Pass

6. (i) In the determination of GPA, the defined grades with the corresponding quality points shall be:

A+	4.30	C+	2.30
A	4.00	C	2.00
A-	3.70	F1	1.70
B+	3.30	F2	1.30
B	3.00	F3	0.00
B-	2.70		

- (ii) The following designations may be assigned, but shall not be used in the calculation of Grade Point Average:

AB: Absent for acceptable reasons other than a medical problem

AM: Absent Medical

ANP: Absent No Penalty

CR: Credit

DB: Debarred

DEF: Deferred

EC: Exemption with credit

EQ: Examination Query

EX: Exemption

FM: Failed Medical – where failure in an examination is attributed to medical reasons as supported by a certificate from an authorized medical practitioner.

FMP: Failed Minus Penalty

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

FNP:	Failed No Penalty	NV:	When a student has been permitted to audit a course but has not done so satisfactorily.
I:	Incomplete – indicates that the student has made progress in a course but at the end of the semester has not finished the work required to receive a letter grade. An I designation is not counted in credit hours earned, or quality hours until a letter grade is reported. If neither a letter grade nor notification of an extension of time is received by the Registry from the Office of Dean, the I designation is replaced by an F3 grade at the end of the first six weeks into the next semester. An extension of time may be granted but shall not normally extend beyond the end of the semester in which the extension is granted. Any remaining I symbol at the end of the period of extension will be deemed an F3.	P:	Pass – a pass obtained in a course taken on a Pass/Fail basis.
IM:	Incomplete Medical	PC:	Preliminary Credits – used for matriculation purposes or the satisfying of Pre-requisites only.
IP:	In Progress - when a dissertation, thesis, project, student teaching, practicum, internship, proficiency requirement, or other course intended to last more than one semester is not completed during the semester in which the student is registered. The IP designation must be replaced with an appropriate grade on completion of the course.	V:	Audited – when the course has been taken in accordance with Regulation 13
LW:	Late Withdrawal	(iii) The following designations may be assigned and shall count towards the GPA:	
NFC:	Not for credit	DIS:	Disqualified
NP:	Not Passed – when a student has failed a course taken on a pass/fail basis.	EI:	Examination Irregularity – Candidate disqualified from examination on account of breach of the Regulations
NR:	Not Reported – when a lecturer fails to submit grades by the published deadline, through no fault of the student.	FA:	When a student is absent from an examination without a valid reason
		FC:	Failed Coursework – indicates that a candidate has failed to satisfy the Examiner in the coursework component of the course.
		FE:	Failed Examination – when a candidate has successfully completed the coursework requirement but has failed to satisfy the Examiners in the examination component of the course
		FO:	Failed Oral (where an oral examination forms part of the assessment of the course)
		FP:	Failed Practical
		FT:	Failed Theory

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

7. The scheme to be used for conversion of numerical marks to letter grades shall as follows:

GRADE GPA	MARKS %
A+	90-100
A	80-89
A-	75-79
B+	70-74
B	65-69
B-	60-64
C+	55-59
C	50-54
F1	40-49
F2	30-39
F3	0-29

8. The courses to be used for the purpose of determining the Weighted GPA for the class of degree to be awarded shall be as prescribed in Faculty Regulations.

9. Where a course has been repeated, the penalty to be applied for failure, and the grade to be used in the computation of the student's GPA if the course is subsequently passed, shall be as prescribed in Faculty Regulations.

10. (i) Where credit for a course taken at another institution is requested, it is the student's responsibility to provide all the information needed by the University to enable it to assess the course.
(ii) Credit hours earned from another institution at the time of admission to the University of the West Indies will not be used in the computation of a grade point average.

11. (i) A UWI student who wishes to take academic courses elsewhere and apply those credits toward the UWI degree must obtain

approval in advance from the relevant Academic Board on the recommendation of the Board of the Faculty in which he/she is registered.

(ii) Only the grade equivalent as determined by the Board for Undergraduate Studies of the results achieved and not the marks or grades so earned at another institution shall be used in the computation of such student's GPA.

12. (i) Except where otherwise prescribed in Faculty Regulations, a student whose GPA for a given semester is less than 2.00 shall be deemed to be performing unsatisfactorily and shall be placed on warning. A student on warning whose GPA for the succeeding semester is less than or equal to 1.99, will be required to withdraw. However, a student may be reinstated if his/her GPA improves beyond 1.99 in Semester 2 by credits obtained in Summer School.
(ii) Except for the students in the Faculty of Engineering, students who entered a programme prior to the academic year 2014/2015 and who have a GPA of less than 2.00 may be given leave by their Faculty to continue into the academic year 2014/2015.

**How to calculate
your Weighted GPA**

Divide the total quality points earned in your programme to date by the total credit hours taken. Exclude courses taken on a pass/fail basis, audited courses, courses taken for preliminary credit, incomplete courses and any other courses which do not count towards the class of degree according to Faculty regulations.

PRIZES AWARDED ANNUALLY IN THE FACULTY OF SCIENCE AND TECHNOLOGY

DEAN'S PRIZES, FACULTY OF SCIENCE & TECHNOLOGY

There shall be two (2) Prizes awarded annually, called the ***Dean's Prizes, Faculty of Science and Technology***. The Prizes shall be awarded to two (2) students registered in the Faculty of Science and Technology:

- With the highest GPA over 60 credits in the Faculty of Science and Technology courses at Levels II/III
- The names shall be inscribed on an appropriate plaque to be displayed in the Faculty Office.

The value of the Prizes shall be:

FIRST PRIZE (BDS \$1000.00)

SECOND PRIZE (BDS) \$500.00

FACULTY PRIZE

This prize consists of a voucher of **BDS \$500.00** to be spent on books/educational equipment. It is awarded to the Level I student with the best academic performance.

THE GRAHAM GOODING BIOLOGY PRIZE

The prize consists of a commemorative scroll and voucher for **BDS \$1000.00** to be used in the purchase of educational or professional development equipment and supplies or cash maybe awarded. It will be awarded to the best student majoring in Biology based on the student's performance

(minimum B+ average) in the Level II and III courses comprising the Biology major.

R. L. SEALE & CO. LTD. PRIZE IN CHEMISTRY

This prize consists of a cash prize of **BDS \$1000.00**. It is awarded to the best student Awarded to the best performing student majoring/double majoring in Chemistry with a minimum grade of A- in the advanced chemistry courses.

THE PFIZER LTD PRIZE IN BIOCHEMISTRY

Valued at **BDS \$500**, it is awarded to the best performing student, based on GPA, majoring in Biochemistry with a minimum grade of A- in the courses used for their Biochemistry major.

LOUIS CHINNERY ECOLOGY PRIZE

A commemorative scroll and a voucher for **BDS \$900.00** to be used in the purchase of books related to the Biological/Ecological/Environmental Sciences. Awarded to the best student majoring in Ecology with a minimum B+.

THE MOUNT GAY DISTILLERIES PRIZE IN MICROBIOLOGY

BDS \$800.00 is awarded to the best performing student majoring in microbiology with a minimum

THE FACULTY OF SCIENCE AND TECHNOLOGY UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026

grade of A- in the courses used for their microbiology major.

HUGH SEALY PRIZE FOR EXCELLENCE IN ENVIRONMENTAL SCIENCE

BDS \$1000.00 is awarded to the best performing student majoring in Environmental Science with a minimum GPA of 3.6 in the advanced courses (30 credits) making up their Environmental Science major.

FACULTY OF SCIENCE AND TECHNOLOGY SCHOLARSHIPS AND GRANTS

A listing of scholarships and grants available to undergraduate students pursuing programmes in the Faculty of Science and Technology, including the Faculty of Science and Technology Scholarship and Bursary, as well as several Science Fee grants, can be found at:

https://www.cavehill.uwi.edu/studentfinancing/sc_holarships/undergraduate-scholarships.aspx

FACULTY OF SCIENCE AND TECHNOLOGY INNOVATION (FINO) AWARD

The Faculty of Science and Technology (FST) Innovation Award (FINO Award) recognizes an innovative, out-of-the-box action, project or initiative performed by a student or students of the Faculty of Science and Technology.

The objectives of the award are to:

- Support the Faculty's *Science for ALL* philosophy.
- Promote the applied sciences.
- Encourage the development of leadership skills.
- Encourage connected thinking, creativity and out-of-the-box thinking.
- To remove the fear and stigma surrounding different ways of thinking and approaches when

resolving problems. In other words, "Dare to be Different".

- Encourage students to use science and technology to resolve local, community problems.
- To encourage the use of the varying skills and abilities of all persons across society (diversity).
- To serve as a platform to promote cross-faculty/cross-department collaboration.

Examples of Innovation:

- Unique solution to a problem encountered in the lab (course or research)
- Unique solution to a problem in a class or tutorial.
- Unique solution at an external location such as field trip, home, charity, community etc.

All solutions must be STEM (Science, Technology, Engineering, Mathematics) based and verifiable (can be proven that the student implemented the solution). Uniqueness can be an entirely new approach or the use of a known solution in an unexpected scenario. The award will consist of **BDS \$500.00** in either cash or vouchers. This will depend on whether the student is enrolled or just graduated. The name of the student will be added to a plaque in the Faculty Office and highlighted in the Faculty's social and regular forms of media.

RULES

1. One award will be given each academic year.
2. An individual student or a group of students can participate.
3. There is no maximum group size.
4. A group submission must include a group name.
5. In the case of a group, each student must be enrolled in a programme in a recognized tertiary institution.
6. In the case of a group submission, at least one student must be enrolled in a FST programme and must be the primary contributor and leader.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

7. The lead student or individual student must be enrolled in the Faculty of Science and Technology.
8. The lead student or individual student must be an undergraduate or postgraduate student.
9. The lead student or individual student must be enrolled in a full degree, diploma or certificate program. Enrolment in short courses is not included.
10. Students who have completed their programme of study must have graduated during the academic year under consideration.
11. Submissions from the private sector can only be used if the lead student or individual student is enrolled in one of the Faculty's internship/professional placement courses.
12. Submissions can be text, audio and/or video. However, visual evidence in the form of text, pictures or video must be submitted for verification purposes.
13. Submissions must be sent to fst@cavehill.uwi.edu.
14. Submissions must be made from a valid mycavehill.uwi.edu email address. All other submissions will be rejected.
15. Submissions must be accompanied by the FST Innovation Award submission form.

DEADLINES AND SUBMISSIONS

1. Entries must be submitted by September 30th after the academic year under consideration.
2. The decision of the judges will be announced in the first week of the December after the academic year under consideration.
3. The award ceremony will take place on the Faculty's Student Awards Ceremony following the academic year under consideration.
4. Submissions must be sent to fst@cavehill.uwi.edu.
5. Submissions must be made from a valid mycavehill.uwi.edu email address. All other submissions will be rejected.

DEAN'S LIST REGULATIONS

Eligibility for inclusion on the Dean's List

The following guidelines are applicable:

- a. Inclusion on the Dean's List will be on a yearly basis. The Summer School Programme will not be considered.
- b. Students must obtain a Semester GPA of 3.60 and above in both semesters.
- c. Full-time students must have passed a minimum of 12 Faculty credits in the semester. Part-time students must have passed a minimum of 6 credits of Faculty courses in the semester.
- d. Credits gained for the following will NOT be taken into consideration in computing the Dean's List:
 - o Foundation courses
 - o Co-curricular offerings
 - o Audited courses
 - o Summer courses
 - o Not-for-credit courses
- e. Repeat courses will be included in the computation of the Semester GPA towards the Dean's List.
- f. Special consideration will be given to students who are differently abled and who have obtained a semester GPA of 3.60 and above but who have registered for less than 12 Faculty credits. Such students must declare and provide supporting documents, to the relevant University authority, as evidence of their disability at the start of the semester. Decisions for inclusion of such differently abled students in the Dean's List will be taken at the Faculty's Board of Examiners Meeting.

GLOSSARY TO THE REGULATIONS

Anti-requisites

Two courses of which credit may be granted for only one.

Course

A body of knowledge circumscribed by a syllabus to be imparted to students by sundry teaching methods and usually followed by an examination.

Credit

A measure of the workload required of students. 1 Credit Hour = 1 hour lecture/tutorial/problem class per week OR 2 hours laboratory session per week, for a Semester.

Cumulative GPA

Grade point average obtained by dividing the total grade point earned by the total quality hours for which the student has registered for any period of time excluding courses taken on a Pass/Fail basis, audited courses, courses taken for Preliminary credit, incomplete and in-progress courses.

Discipline

A body of knowledge encapsulated in a set of courses distinguishable from other such bodies on the basis of criteria such as method of enquiry, axioms, areas of application.

Elective

A course within a programme taken by choice of the student.

Faculty Courses

All courses except Foundation and Co-curricular courses.

Foundation Courses

Broad-based courses, three of which must be taken, and which provide a general foundation of knowledge.

Honours/Degree GPA

Weighted grade point average used to determine the class of degree. This GPA is computed on the basis of all courses done in the Advanced Part (Levels 2 & 3) of the degree programme, weighted with respect to credits and to earned quality hours.

In-Faculty Courses

All Faculty courses originating in the Science Faculties.

Level

A measure of the standard of a course, designated at The UWI by the first digit in the course number.

Major

30 credits (minimum) from prescribed courses at Levels 2 & 3 (as defined).

Marginal Failure

A score for the overall examination of a course which is not more than 5 marks below the minimum pass mark for that course.

Minor

15 credits (minimum) of prescribed courses at Levels 2 & 3 (as defined).

Option

A prescribed programme, comprising in-Faculty and, in some cases, out-of-Faculty courses, leading to a specific degree.

Out-of-Faculty Courses

All Faculty courses originating in Faculties other than the Science Faculties.

Preliminary Course

A Level 0 course used to satisfy entry requirements but does not contribute towards the requirements for the award of the degree.

Pre-requisite

A course which must be passed before another course for which it is required may be pursued.

Programme

A selection of courses (designed to achieve pedagogical goals) the taking of which is governed by certain regulations and the satisfactory completion of which (determined by such regulations) makes a candidate eligible for the award of a degree/diploma/certificate.

Science Faculties

The Faculties of Science and Technology at Cave Hill, Mona and St. Augustine.

Semester GPA

Grade point average (GPA) computed on the basis of all courses done in a semester, without reference to weighting except in terms of credits. (The terms Grade Point, GPA, Quality Hours and Quality Points are defined in The UWI Grade Point Average Regulations Booklet).

Subject

An area of study traditionally assigned to the purview of a department.

Supplemental Examination

A re-sit of an examination of a course which is not more than 5 marks below the minimum pass mark for that course.

Supplementary Oral

An oral examination, offered on recommendation of Department and Faculty, to candidates who have registered a marginal failure in a Level 2 or 3 course.

FACULTY REGULATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE

All students at the University are subject to the University Regulations for Students approved by the Senate of the UWI.

Where there is conflict between the regulations of any Faculty and the University Regulations, the University Regulations shall apply.

A. QUALIFICATIONS FOR ADMISSION

1. In order to be admitted to the three-year degree programme, candidates must satisfy the University requirements for Matriculation (see [The UWI University Regulations for Students](#)) and have passed Mathematics and two approved science subjects [Appendix I(b)] at CSEC General Proficiency level at Grades I, II or, since 1998, Grade III (or equivalent qualification) and
 - a. Have obtained passes in four Units at CAPE, at least two Units in one subject, all at Grade V or better (or equivalent qualification). One of the CAPE subjects must be an Approved Science subject [see [Appendix I\(a\)](#)] or
 - b. Have an approved Associate Degree with a GPA of 2.5 (or equivalent qualification) or higher, from a Tertiary Level Institution.
(N.B. Candidates must also satisfy Departmental Requirements).
2. In order to be admitted to the four-year degree programme, candidates must satisfy the University requirements for Matriculation (see [The UWI University Regulations for Students](#)) and have passed Elementary Mathematics at CSEC General Proficiency level at Grades I, II or, since 1998, Grade III (or equivalent qualification) plus at least two of the

disciplines listed in Appendix I(b).

B. OUTLINE OF THE DEGREE PROGRAMME

3. The degree of B.Sc. is awarded on the basis of a programme of studies comprising combinations of courses in Science disciplines, together with certain Foundation courses. Approved Out-of-Faculty (see [Glossary](#)) courses may be included.
4. The Science Faculties offer the following Bachelors degrees in Science (the terms Major, Minor, Option etc., are defined in the Glossary):
 - a. A degree with a single Major (30 credits minimum from Levels 2 and 3) or a double Major in one or two Science disciplines (2 x 30 credits minimum or 1 x 60 credits minimum, from Levels 2 and 3).
(See [Appendix II](#) for a list of Science Majors offered).
 - b. A degree with a single Major in a Science discipline plus
 - i. one or two Minors from other distinct Science disciplines (each with 15 credits minimum from Levels 2 & 3)
 - ii. a Major, or one or two Minors, from other Faculties. Out-of-Faculty Majors and Minors are governed by the regulations of the Faculty of origin. Only certain such combinations are allowed, and these are considered Option. (See [Appendix V](#)).
5. The following types of courses, which may consist of both theoretical and practical parts, are offered by the University:
 - a. Courses taught by the Science Faculties (in-

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Faculty courses) include Preliminary (Level 0) and Levels 1, 2 and 3 courses. (Preliminary courses may be used to satisfy entry requirements of Regulation 1 above, but do not contribute towards the requirements for the award of a degree.)

b. Service courses, which provide students with basic techniques and skills needed for dealing with the academic programme.

c. Approved Out-of-Faculty courses which may contribute toward the requirements for the award of a degree.

d. Foundation courses (see [Appendix III](#)) which are given throughout the University to augment the general education of students.

e. Co-curricular activities approved for credit by Academic Board. A maximum of three credits of co-curricular activities may be included as part of the credits required for the award of a degree but shall not be taken into account in the determination of the Cumulative GPA or the class of degree. They may not be substituted for Foundation Courses. Co-curricular credits gained in excess of three will be entered on the student's transcript but will not contribute toward the requirements for the degree.

6. Courses normally extend over not more than one semester, but in special cases may extend over two semesters. The contact hours for a course are expressed in terms of Credit Hours (credits) and the credit-rating of a course is determined by the Faculty which administers the course. (See [Glossary](#)).

7. In order to be eligible for award of the degree, candidates must:

a. have been in satisfactory attendance for a period equivalent to at least six semesters of full-time study from entry into Level 1; and

b. have passed courses totalling a minimum of 93 credits from Level 1, 2 and 3 Faculty and Foundation courses for the degree as follows:

Level 1	24
Level 2 and Level 3	60
Foundation courses	9
Total	93

i. A minimum of 12 credits at Level 1 and 30 credits at Levels 2 and 3 must be taken from in-Faculty courses.

ii. Specific Options, or Cross-Faculty programmes, may require more than 93 credits (see [Appendix V](#))

iii. have a Degree GPA of at least 2.00.

C. REGISTRATION

8. A student pursuing a degree in the Faculty may register [full-time](#) or [part-time](#). A student who is in full-time employment may pursue a degree on a part-time basis only.

9. Students must register for courses at the beginning of the academic year. Time limits governing changes in registration are as outlined in the student handbooks for each Campus. A student is deemed to be registered for a course only after his/her financial obligations to the University have been fulfilled.

10. Registration for any course (except audited courses) automatically implies entry for the associated examinations. A student who fails to attend the examinations without having previously withdrawn from the course (see Reg.9), or without having tendered evidence of illness at the time of the examinations, certified by a medical practitioner recognized by the

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

University, will be deemed to have failed the course. Medical certificates must reach the Campus Registrar no later than seven days after the date of the examination concerned.

11. a. A student who has passed a course will not be permitted to re-register for that course.
- b. Likewise, students may not register for Preliminary courses in a subject which overlaps substantially with any CAPE/GCE A-Level courses (or equivalent) previously passed.

D. PROGRESS THROUGH THE PROGRAMME

12. Students admitted into the four-year degree programme (Reg.2) who have already obtained one CAPE/GCE A-level pass (or equivalent) in an approved science subject, may be permitted to register for up to **9** credits of Level 1 courses.
13. a. Full-time Part I students are required to register for a minimum of **12** credits from Faculty courses and Foundation course, per semester. A student registering for less than twelve credits will be deemed to be a part-time student.
- b. In order to register for Level 2 courses, a student must normally pass a minimum of **18** credits in Level 1 Faculty courses. At least **12** of these credits must be from in-Faculty courses.
- c. A student must not register for less than two courses in any one semester, except with the permission of the Dean.
- d. The normal load for a full-time student is 15 course credits per semester, plus one Foundation course i.e.: 33 credits over Semester I & II.
14. The maximum number of credits for which a student may register in any one semester is 18 credits, if full-time, and 11 credits, if part-time.

15. a. Students must make a final declaration of their proposed major(s) and/or minor(s) by the end of the registration period of the semester in which they intend to graduate.
- b. Students must graduate as soon as they have met the requirements for the degree for which they are registered.

E. EXAMINATIONS

16. In order to pass a course, a student must have been in satisfactory attendance at the course and must have satisfied the examiners in the associated examinations.
17. The examination associated with each course shall be conducted mainly by means of written and/or practical papers, normally taken at the end of the semester in which the candidate has registered for the courses concerned. However, oral examinations as well as performance in course work in the form of essays, in-course tests, research papers, projects, or continuous assessment of theoretical and/or practical work may contribute towards the final grade awarded in a course.
18. a. When practical papers and/or practical coursework contribute towards an examination, candidates must satisfy the examiners in both the theoretical and practical aspects of the course. On the basis of performance in the practical component of the course, a candidate may, on the recommendation of the Department concerned, be exempted from the practical part of the examination.
- b. To obtain a pass in Computer Science and Mathematics courses, candidates must pass both coursework and final examination.
19. A candidate who marginally fails the examination associated with a Preliminary or

Level 1 course may, if recommended by the relevant Department, be granted permission by the Board of Examiners to sit a Supplemental Examination. Such permission will be given on the basis of the performance of the candidate in the courses concerned.

20. A finalist who marginally fails a course needed for graduation, having satisfied the Departmental requirements, may, at the discretion of the Faculty Board of Examiners, be offered a Supplementary Oral. Any candidate who satisfies the examiners in a Supplementary Oral will be given the minimum passing grade in the course. No more than two Supplementary Orals may be gained. However, a third oral examination may be granted to final year students in circumstances when passing a single course is all that is required. A Supplemental Oral precludes the student requesting a Remark.
21. A candidate who fails the examination associated with a course may be given permission to repeat the course and the examination on a subsequent occasion. In the event that such a candidate has satisfied the examiners in the coursework, the candidate may, on the recommendation of the relevant Department, be exempted from the coursework passed. If such a recommendation has been made, the candidate may apply to the Dean for permission to take the examination without attending the course (Exam Only).
22. The Academic Board of a candidate's Campus on the recommendation of the Faculty Board concerned, may debar the candidate from writing the examination associated with a course if the candidate has not attended and/or performed satisfactorily in the course. **The grade for such a candidate will be recorded as Absent Fail.**

F. GPA AND CLASS OF DEGREE

23. a. A Semester grade point average which includes all approved courses for which the student is registered in a semester, whether passed or failed, will be calculated for the determination of academic standing.
- b. A Cumulative grade point average which includes all courses completed excluding those taken on a Pass/Fail basis, audited courses, Preliminary courses and courses designated I or IP will be calculated and recorded on the student's transcript.
- c. A Degree grade point average including all Level 2 and 3 courses, whether passed or failed, will be calculated for determination of the class of the degree. (See [Appendix IV](#) for the relationship between marks, grade point average and class of degree).

24. All courses included in the computation of the grade point averages in Regulation 23, are weighted according to their credit rating.

G. LEAVE OF ABSENCE AND VOLUNTARY WITHDRAWAL

25. a. A student who wishes to be absent from the Faculty for a semester or more may apply for Leave of Absence, through the Dean, to the campus Academic Board, stating the reasons for the application.
- b. Leave of Absence will not be granted for more than two consecutive semesters in the first instance. However, students may apply for an extension of leave.
- c. Leave of Absence will not be granted for more than four consecutive semesters.
- d. Applications for Leave of Absence or extension thereof should normally be submitted by the end of the registration period in the relevant semester.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

26. A student who registers for no courses in two successive semesters without having obtained Leave of Absence will be deemed to have withdrawn from the Faculty.

27. A student who voluntarily withdraws from the university and who applies for re-admission within five years shall be granted exemption and credit for all courses previously passed unless the Department concerned declares that the material covered in a course has become outdated. All grades previously obtained except those for courses declared outdated shall be used in the determination of the GPA of such a student.

H. TIME LIMITS FOR COMPLETION & ENFORCED WITHDRAWALS

28. For the purposes of Regulations 29 & 30 below, any semester in which a student is registered part-time or any registration for the maximum number of credits for Summer school will be counted as half of a semester of full-time study. After the total of equivalent full-time study has been obtained in this way, it will be rounded down to a whole number.

29. a. A student whose Semester Grade Point Average is less than 2.00, will be deemed to be performing unsatisfactorily and will be placed on Warning.
b. A student on Warning, whose Semester grade point average is less than 2.00, will be Required To Withdraw from the Faculty.

30. a. Students admitted to the programme under Reg.1 shall complete the requirements for the degree in a minimum of six or a maximum of ten semesters of full-time study.
b. Students admitted to the programme under Reg.2 shall complete the requirements for the degree in a minimum of eight or a maximum of twelve semesters of full-time study.

c. Students who cannot complete the programme within the maximum periods given in (a) and (b) above will normally be Required To Withdraw from the Faculty at the end of the academic year in which the maximum is reached.

31. In the event that a student has exhausted the maximum periods mentioned in Reg.30 above, but still requires for the completion of the degree programme,
Either:

a. passes in courses totalling no more than six credits,
or:

b. passes in Foundation courses only, the Faculty Board may at its discretion recommend to Academic Board an extension of the period of study by one or two semesters.

32. For the purposes of Regulations 28 to 31 above, any semester for which a student has obtained Leave of Absence from the Faculty shall not be counted (see Reg.25).

33. Notwithstanding Regulations 28 to 32 above, Academic Board may, on the recommendation of the Faculty Board, require the student to Withdraw from the Faculty at the end of any semester on grounds of persistent neglect of work and/or repeated failure in examinations.

34. A student **Required To Withdraw** from one Faculty:

a. may register immediately in another, if in the opinion of the student and the Dean of the receiving Faculty this is desirable, and the student satisfies that Faculty's entry requirements;
b. will be required automatically to withdraw

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

from the University if not granted registration in another Faculty; and

- c. may not register in the ensuing Academic Year, for any courses in the Faculty from which (s)he had been Required To Withdraw.
- d. if readmitted and Required To Withdraw for a second time, will not be considered for readmission until a minimum period of five years has elapsed.

35. A student who was Required To Withdraw for reasons of failure to progress may be readmitted to the Faculty on the following conditions:

- a. A minimum of one year has passed since the date of withdrawal
- b. The Faculty is satisfied that the circumstances attending the reasons for the withdrawal have altered substantially.
- c. All grades previously obtained, except for courses to be repeated (having been deemed outdated), shall continue to apply for the purpose of determining the student's GPA.
- d. Subject to The UWI Grade Point Average Regulation 11, courses pursued at an institution other than the UWI during the period of withdrawal may be eligible for credit.
- e. Courses pursued in The UWI Summer School during the period of withdrawal shall be included in all relevant grade point average calculations if the student re-enters the UWI.

application will be considered on its own merit.

- 37. Students on transfer between different BSc degree programmes or from other programmes of study within the University may, on the basis of passes already obtained, and on the recommendation of the Departments concerned, be exempted from some or all of the Level 1 courses, and some of the Level 2 and/or Level 3 courses. Students exempted from all Level 1 courses may complete the degree programme in a minimum of four or a maximum of eight semesters of full-time study from the time of transfer. Students exempted from all Level 1 courses and some Level 2 and/or Level 3 courses may complete the degree programme in a minimum of two semesters of full-time study from the time of transfer.
- 38. a. A student who wishes to take academic courses as an exchange/transfer student at an institution other than the UWI and to apply those credits toward the degree must obtain written approval in advance from the Dean. Failure to obtain written approval in advance may preclude the acceptance of the credits.
- b. A student must have a minimum GPA of 3.00 by the end of Semester II to be approved as an exchange/transfer student in the following academic year.
- c. Where the course to be taken is to be substituted for a UWI course, the content of the course must be certified by the relevant Department as being equivalent to the UWI course. Course outlines and syllabuses must be provided by the student in order to permit the evaluation of the course content.
- d. A student may not take courses for degree credit at an institution other than the UWI during the semester in which he or she completes or is expected by the Faculty to complete the requirements for graduation

I. EXEMPTIONS AND TRANSFERS

36. Holders of degrees from approved universities, or candidates who have partially fulfilled the requirements of such degrees, may apply to the Board for Undergraduate Studies, through the Faculty Board of the candidate's campus, for exemption from Level 1 courses. Each such

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

from the UWI.

J. AEGROTAT DEGREE

39. a. A candidate who, by reason of illness, was prevented from attending examinations or part of the examinations associated with a Level 2 or 3 course in the year of anticipated graduation may apply to the Board for Undergraduate Studies through the University Registrar, for an Aegrotat pass in the course. Such an application will be granted only if all the following conditions are satisfied:

- i. The appropriate Head of Department reports that, on the basis of the candidate's performance during the period preceding the examinations, the candidate was expected to pass the examinations concerned and has satisfactorily completed any associated course work.
- ii. The application reaches the University Registrar not later than 30 days after the date of the last paper in the examination concerned.
- iii. The application is accompanied by a medical certificate attesting to the illness and issued by a medical practitioner recognized for this purpose by the University.

b. No grade will be awarded in respect of an Aegrotat pass, and a candidate having been awarded an Aegrotat pass will not be allowed to re-enter the examination for the course concerned on a subsequent occasion. An Aegrotat pass may not be used to satisfy a pre-requisite for other Level 2 and/or Level 3 courses.

c. A student who, having satisfactorily

completed the degree programme, includes Aegrotat passes in courses counted for the degree programme, will be eligible for the award of an Aegrotat degree if both of the following conditions are satisfied:

- i. The courses in which Aegrotat passes have been granted (and which need to be counted toward the award of the degree) are equivalent to no more than 24 credits.
- ii. No more than 12 credits mentioned in (i) above arise from courses making up the candidate's major.
- iii. The Aegrotat degree will be awarded without Honours.

INDEX TO REGULATIONS

Topic	Regulation
Absence	16, 22, 25, 26
Admission requirements	1, 2
Advanced part	13b
Aegrotat degree	39
Approved Science subject	1, 2, Appendix I
Associate degree	2
Attendance	7a, 16, 22
Audited courses	10
Change of major	15a
Change of minor	15a
Change of registration	9
Co-curricular credits	5
Contact hours	6
Course length	6
Course load	13, 14
Courses, at other institutions	35d, 38
Courses, maximum	14
Courses, minimum	13
Coursework	17, 21, 39i
Credit, maximum	14
Credit, minimum	13
Credits, co-curricular	5
Credits, in-Faculty	7bi
Credits, required	7b
Debarred from exams	22
Declaration of major	15a
Deemed to have withdrawn	26
Degree length	7a, 31
Degree requirements	7, 15b
Employment	8
Exchange	38
Exemptions	36, 37
Extension	31
Financial obligations	9
Foundation course	5, 7b

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Topic	Regulation
Four-year degree	1, 12a
Full-time	8, 13, 14, 28, 31
GPA	1b, 5e, 7c, 23, 24, 27, 35c, d, e, 38b
GPA, Cumulative	7c, 23b
GPA, Honours	23c
GPA, Semester	23a
Illness	10, 39
In-Faculty courses	7bi
Leave of absence	25, 33
Level II	13b
Major	4, 15a, Appendix II
Matriculation	1, 2
Medical certificates	10, 39
Minor	4, 15a
Option	4, 7bii
Oral exam	20
Out-of-faculty course	4bii, 5, 7bi
Overlap	12c
Part-time	8, 14, 28
Performance, unsatisfactory	22, 29, 34
Persistent neglect	34
Practical	18, 21
Preliminary	5a
Re-admission	27, 35
Re-entry	27, 35
Repeating a course	11, 12c, 21
Required to withdraw	28, 29, 30, 31, 34, 35
Service course	5
Summer school	28, 35e
Supplemental exam	19, 21
Three-year degree	2, 12b
Time limit	30, 31
Transfer	36, 37, 38
Unsatisfactory performance	22, 29, 30a, 34
Voluntary withdrawal	25, 27
Warning	29
Withdrawal	25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 35

APPENDIX I

A. LIST OF APPROVED SCIENCE CAPE / GCE A-LEVEL SUBJECTS

<i>Applied Mathematics*</i>
<i>Biology</i>
<i>Botany</i>
<i>Chemistry</i>
<i>Computer Science</i>
<i>Environmental Science</i>
<i>Further Mathematics*</i>
<i>Geography</i>
<i>Geology</i>
<i>Physics</i>
<i>Pure & Applied Mathematics*</i>
<i>Pure Mathematics*</i>
<i>Zoology</i>

*The following cannot be counted together:

- i. Further Mathematics with Applied Mathematics CAPE/GCE A-Level;
- ii. Mathematics (Pure and Applied) with Pure Mathematics or Applied Mathematics at CAPE/GCE A-Level.

B. LIST OF APPROVED SCIENCE CSEC GENERAL PROFICIENCY/GCE O-LEVEL SUBJECTS:

<i>Additional Mathematics</i>
<i>Biology</i>
<i>Chemistry</i>
<i>Computer Science</i>
<i>Geography</i>
<i>Information Technology (General)</i>
<i>Integrated Science</i>
<i>Physics</i>

APPENDIX II

LIST OF MAJORS IN THE UWI SCIENCE FACULTIES:

<i>Agriculture</i>
<i>Alternative Energy</i>
<i>Applied Chemistry</i>
<i>Biochemistry *</i>
<i>Biology*</i>
<i>Biotechnology</i>
<i>Botany</i>
<i>Chemistry*</i>
<i>Computer Science*</i>
<i>Ecology*</i>
<i>Electronics*</i>
<i>Environmental Biology</i>
<i>Environmental Science*</i>
<i>Experimental Biology</i>
<i>Food Chemistry</i>
<i>Geology</i>
<i>Information Technology*</i>
<i>Mathematics*</i>
<i>Meteorology*</i>
<i>Microbiology*</i>
<i>Molecular Biology</i>
<i>Physics*</i>
<i>Software Engineering*</i>
<i>Zoology</i>

* Offered at Cave Hill

APPENDIX III

THE FOREIGN LANGUAGE REQUIREMENT

(for students entering academic year 2022/23 or after)

1. All students registered in the Faculty of Science and Technology who did **not** have at least CSEC General Grade II before 1998, or Grade III after 1998, or its equivalent, in a foreign language are required to complete three (3) credits from one of the following beginners' foreign language courses:
 - CHIN1001 Chinese Language 1A
 - FREN0101 Beginners' French
 - SPAN0101 Beginners' Spanish
 - PORT1001 Portuguese Language 1A
 - Any other language course as approved by the Faculty of Science and Technology

A student may substitute one of the non-language Foundation Courses (i.e., FOUN1101 or FOUN1301) with a foreign language course at the level of their competence.

2. All international students whose first language is not ENGLISH and who matriculated into the Faculty of Science and Technology with English as a Second Language (ESL) qualifications shall be exempted without credit from this requirement.
3. Students may opt not to take a UWI foreign language course and choose instead the self-directed learning path to foreign language competency. Those who do so must demonstrate competency to the satisfaction of the UWI, that is at the Common European Framework of Reference for Language:

Learning, Teaching, Assessment (CEFR) A1 or its equivalent in other systems.

4. Students who do not possess certification in a foreign language but might have pursued a foreign language may take a proficiency test to demonstrate their competence to the satisfaction of the UWI (i.e., CEFR A1 or its equivalent).
5. Students may fulfil this requirement at any time during their undergraduate programme.

FOUNDATION COURSES

FOUN 0100 – Fundamentals of Written English
¹FOUN 1006 – Exposition for Academic Purposes
¹FOUN 1008 – An Introduction to Professional Writing
*FOUN 1101 – Caribbean Civilization
²FOUN 1201 – Science, Medicine & Technology in Society
*FOUN 1301 – Law, Governance, Economy & Society

¹ Both courses cannot be taken - students must choose one or the other.

² Not available to Science Faculty Students.

*A student may substitute one of these with a Foreign Language course.

FOUN 0100 FUNDAMENTALS OF WRITTEN ENGLISH (0 Credits)

This course is required for all students entering the University who are not exempted from the Proficiency Test or have not taken it or failed it.

FOUN 1006 EXPOSITION FOR ACADEMIC

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

PURPOSES (3 Credits)

This course is designed to: (1) equip students with the study and research skills they will need in order to get the maximum benefit from all their courses at the University; (2) familiarize them with the linguistic situation in the Caribbean and break down common misconceptions they usually have about it; (3) introduce students to the rhetorical modes of discourse; and (4) develop skill in critical thinking and reading. (Cannot be taken with FOUN1008)

FOUN 1008 AN INTRODUCTION TO PROFESSIONAL WRITING (3 Credits)

This course is designed to help students develop skills common to all professional, workplace-oriented writing, whether in business or science. (Cannot be taken with FOUN1006)

**FOUN 1101 CARIBBEAN CIVILIZATION*
(3 Credits)**

This course is designed to develop an awareness of the main process of cultural development in Caribbean societies, highlighting the factors, the problematics and the creative output that have fed the emergence of Caribbean identities; to develop a perception of the Caribbean as wider than island nations or linguistic blocs; to stimulate students' interest in, and commitment to Caribbean civilization and to further their self-determination.

FOUN 1201 SCIENCE, MEDICINE AND TECHNOLOGY IN SOCIETY¹ (3 Credits)

The overall aim of the course is to develop the ability of the student to engage in an informed manner in public discourse on matters pertaining to the impact of science, medicine and technology on society. The course will help students to appreciate the essential characteristics of the scientific method as a mode of

enquiry into nature and to understand why it provides the foundations of the technological world.

(Students in the Faculty of Science and Technology cannot take this course)

FOUN 1301 LAW, GOVERNANCE, ECONOMY AND SOCIETY* (3 Credits)

This is a multi-disciplinary course of the Faculty of Social Sciences which is designed mainly for non-Social Sciences students. The course will introduce students to some of the major institutions in Caribbean society. It will expose them to both historical and contemporary aspects of Caribbean society, including Caribbean legal, political and economic systems. In addition, Caribbean culture and Caribbean social problems are discussed.

¹ Not available to Science Faculty Students

*A student may substitute one of these with a Foreign Language course

REPLACING A FOUNDATION COURSE WITH A FOREIGN LANGUAGE COURSE

Students in the Faculty of Science and Technology may replace FOUN1101 Caribbean Civilization OR FOUN1301 Law, Governance, Economy and Society with a foreign language course in French, Spanish, Portuguese or Chinese. Students seeking to do such should notify the faculty office via use of Foundation Course Substitution Form on the student resources page of the faculty website, found [HERE](#).

APPENDIX IV

GRADING SYSTEM

Table 1: Mark-to-Grade Conversion & Quality Points (GPA SYSTEM)

GRADE	MARK %	QP
A+	90-100	4.30
A	80-89	4.00
A-	75-79	3.70
B+	70-74	3.30
B	65-69	3.00
B-	60-64	2.70
C+	55-59	2.30
C	50-54	2.00
F1	40-49	1.70
F2	30-39	1.30
F3	0-29	0.00

Table 2: GPA to Honours Conversion

CLASS OF HONOURS	CUMULATIVE GPA
First	3.60 and above
Upper Second	3.00 - 3.59
Lower Second	2.50 - 2.99
Pass	2.00 - 2.49

APPENDIX V

OPTIONS IN CONJUNCTION WITH OTHER FACULTIES

- A. Programmes with the Faculty of Social Sciences
- B. Programmes with the Faculty of Humanities & Education

PROGRAMMES WITH THE FACULTY OF SOCIAL SCIENCES

Under an agreement with the Faculty of Social Sciences, a limited number of students will be allowed to pursue the following cross-Faculty programmes, subject to timetable restrictions: -

- Computer Science & Accounting
- Computer Science with Accounting
- Computer Science & Economics
- Computer Science with Economics
- Computer Science & Management
- Computer Science with Management
- Information Technology & Accounting
- Information Technology with Accounting
- Information Technology & Economics
- Information Technology with Economics
- Information Technology & Management
- Information Technology with Management
- Mathematics and Accounting
- Mathematics with Accounting
- Mathematics & Economics
- Mathematics with Economics
- Science Major & Management
- Science Major with Management
- Science Major with Sustainable Energy Management

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc COMPUTER SCIENCE AND ACCOUNTING

LEVEL I (33 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics 1
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management Accounting
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVELS II & III (60 CREDITS)

LEVEL II (33 CREDITS)

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
ACCT2014 Financial Accounting I
ACCT2015 Financial Accounting II
ACCT2017 Management Accounting I
MGMT2023 Financial Management I

AND Six (6) Credits from Level II Accounting/Management Courses

LEVEL III (27 CREDITS)

COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
ACCT3043 Auditing I
AND Either
ACCT3040 Advanced Accounting Theory
OR
ACCT3041 Advanced Financial Accounting
AND Six (6) Credits from Level III Accounting Courses
AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc COMPUTER SCIENCE WITH ACCOUNTING

LEVEL I (33 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics 1
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management Accounting
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVELS II & III (60 CREDITS)

LEVEL II (24 CREDITS)

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
ACCT2014 Financial Accounting I
ACCT2015 Financial Accounting II
ACCT2017 Management Accounting I

LEVEL III (36 CREDITS)

COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
ACCT3043 Auditing I
AND Either
ACCT3040 Advanced Accounting Theory
OR
ACCT3041 Advanced Financial Accounting
AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses
AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc COMPUTER SCIENCE AND ECONOMICS

LEVEL I (24 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics 1
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
ECON2000 Intermediate Microeconomics I
ECON2001 Intermediate Microeconomics II
ECON2002 Intermediate Macroeconomics I
ECON2003 Intermediate Macroeconomics II
ECON2026 Statistical Methods II

LEVEL III (30 CREDITS)

COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
ECON3049 Econometrics I

AND Four (4) Level II/III ECON courses (12 Credits)

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing
AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc COMPUTER SCIENCE WITH ECONOMICS

LEVEL I (24 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics 1
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
ECON2000 Intermediate Microeconomics I
ECON2001 Intermediate Microeconomics II
ECON2002 Intermediate Macroeconomics I
ECON2003 Intermediate Macroeconomics II
AND One (1) Level II/III ECON course (3 Credits)

LEVEL III (30 CREDITS)

COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc COMPUTER SCIENCE AND MANAGEMENT

LEVEL I (30 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management Accounting
ECON1001 Introduction to Microeconomics
MGMT1001 Introduction to Management
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (36 CREDITS)

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
MKTG2001 Principles of Marketing
MGMT2006 Information Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2021 Business Law I
MGMT2023 Financial Management I
MGMT3017 Human Resources Management

LEVEL III (24 CREDITS)

COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
MGMT2026 Production & Operations Management
MGMT3031 Business Strategy and Policy
MGMT3033 Business, Government and Society
AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc COMPUTER SCIENCE WITH MANAGEMENT

LEVEL I (30 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management Accounting
ECON1001 Introduction to Microeconomics
MGMT1001 Introduction to Management
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
MKTG2001 Principles of Marketing
MGMT2006 Information Systems I
MGMT2008 Organizational Behaviour
MGMT2023 Financial Management I
MGMT3017 Human Resources Management

LEVEL III (30 CREDITS)

COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc INFORMATION TECHNOLOGY AND ACCOUNTING

LEVEL I (33 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics 1
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management Accounting
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVELS II & III (60 CREDITS)

LEVEL II (33 CREDITS)

COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
ACCT2014 Financial Accounting I
ACCT2015 Financial Accounting II
ACCT2017 Management Accounting I
MGMT2023 Financial Management I

AND Six (6) Credits from Level II Accounting /Management Courses

LEVEL III (27 CREDITS)

COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
ACCT3043 Auditing I
AND Either
ACCT3040 Advanced Accounting Theory
OR
ACCT3041 Advanced Financial Accounting
AND Six (6) Credits from Level III Accounting Courses
AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc INFORMATION TECHNOLOGY WITH ACCOUNTING

LEVEL I (33 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics 1
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management Accounting
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

ACCT3043 Auditing I

AND Either

ACCT3040 Advanced Accounting Theory

OR

ACCT3041 Advanced Financial Accounting

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course

LEVELS II & III (60 CREDITS)

LEVEL II (24 CREDITS)

COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
ACCT2014 Financial Accounting I
ACCT2015 Financial Accounting II
ACCT2017 Management Accounting I

LEVEL III (36 CREDITS)

COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc INFORMATION TECHNOLOGY AND ECONOMICS

LEVEL I (24 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics 1
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
ECON2000 Intermediate Microeconomics I
ECON2001 Intermediate Microeconomics II
ECON2002 Intermediate Macroeconomics I
ECON2003 Intermediate Macroeconomics II
ECON2026 Statistical Methods II

LEVEL III (30 CREDITS)

COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
ECON3049 Econometrics I

AND Four (4) Level II/III ECON courses (12 Credits)

AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing
AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

BSc INFORMATION TECHNOLOGY SCIENCE WITH ECONOMICS

LEVEL I (24 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1230 Introductory Applied Statistics 1
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
ECON2000 Intermediate Microeconomics I
ECON2001 Intermediate Microeconomics II
ECON2002 Intermediate Macroeconomics I
ECON2003 Intermediate Macroeconomics II
AND One (1) Level II/III ECON course (3 Credits)

LEVEL III (30 CREDITS)

COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc INFORMATION TECHNOLOGY AND MANAGEMENT

LEVEL I (30 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management Accounting
ECON1001 Introduction to Microeconomics
MGMT1001 Introduction to Management
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (36 CREDITS)

COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
MKTG2001 Principles of Marketing
MGMT2006 Information Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2021 Business Law I
MGMT2023 Financial Management I
MGMT3017 Human Resources Management

LEVEL III (24 CREDITS)

COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
MGMT2026 Production & Operations Management
MGMT3031 Business Strategy and Policy
MGMT3033 Business, Government and Society
AND at least Six (6) credits (including at least one Level III course) from Information Technology Elective Courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing
AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc INFORMATION TECHNOLOGY WITH MANAGEMENT

LEVEL I (30 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management Accounting
ECON1001 Introduction to Microeconomics
MGMT1001 Introduction to Management
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
MKTG2001 Principles of Marketing
MGMT2006 Information Systems I
MGMT2008 Organizational Behaviour
MGMT2023 Financial Management I
MGMT3017 Human Resources Management

LEVEL III (30 CREDITS)

COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

BSc MATHEMATICS AND ACCOUNTING

LEVEL I (33 CREDITS)

MATH1141 Introductory Linear Algebra &
Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1230 Introductory Applied Statistics 1
MATH1235 Python Programming & Mathematical
Software
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management
Accounting
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
ACCT2014 Financial Accounting I
ACCT2015 Financial Accounting II
MGMT2023 Financial Management I
**AND Six (6) Credits from Level II
Accounting/Management Courses**

LEVEL III (30 CREDITS)

MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2
AND
MATH3555 Complex Analysis
OR
MATH3560 Metric Spaces
ACCT2017 Management Accounting I
ACCT3043 Auditing I
AND Either
ACCT3040 Advanced Accounting Theory
OR
ACCT3041 Advanced Financial Accounting
**AND Six (6) Credits from Level III Accounting
Courses**
**AND Three (3) Credits from Level II/III
Mathematics Elective Courses**

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign
Language course.

BSc MATHEMATICS WITH ACCOUNTING

LEVEL I (33 CREDITS)

MATH1141 Introductory Linear Algebra &
Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1230 Introductory Applied Statistics 1
MATH1235 Python Programming & Mathematical
Software
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management
Accounting
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics
MGMT1001 Introduction to Management

LEVEL III (36 CREDITS)

MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2
AND
MATH3555 Complex Analysis
OR
MATH3560 Metric Spaces
ACCT3043 Auditing I
AND
ACCT3040 Advanced Accounting Theory
OR
ACCT3041 Advanced Financial Accounting
**AND Three (3) Credits from Level II/III
Mathematics Elective Courses**

LEVELS II & III (60 CREDITS)

LEVEL II (24 CREDITS)

MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
ACCT2014 Financial Accounting I
ACCT2015 Financial Accounting II
ACCT2017 Management Accounting I

**AND Fifteen (15) Level II/III Credits from any
Faculty. Three (3) of these credits can come from
a Co-curricular course.**

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign
Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc MATHEMATICS AND ECONOMICS

LEVEL I (24 CREDITS)

MATH1141 Introductory Linear Algebra &
Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1230 Introductory Applied Statistics 1
MATH1235 Python Programming & Mathematical
Software
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
ECON2000 Intermediate Microeconomics I
ECON2001 Intermediate Microeconomics II
ECON2002 Intermediate Macroeconomics I
ECON2003 Intermediate Macroeconomics II
ECON2026 Statistical Methods II

LEVEL III (30 CREDITS)

MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2
ECON3049 Econometrics I
AND
MATH3555 Complex Analysis
OR
MATH3560 Metric Spaces
AND Twelve (12) Credits from Level II/III ECON courses
AND Three (3) Credits from Level II/III Mathematics Elective Courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

BSc MATHEMATICS WITH ECONOMICS

LEVEL I (24 CREDITS)

MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1235 Python Programming & Mathematical Software
MATH1230 Introductory Applied Statistics 1
ECON1001 Introduction to Microeconomics
ECON1002 Introduction to Macroeconomics

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
ECON2000 Intermediate Microeconomics I
ECON2001 Intermediate Microeconomics II
ECON2002 Intermediate Macroeconomics I
ECON2003 Intermediate Macroeconomics II
AND One (1) Level II/III ECON course (3 Credits)

LEVEL III (30 CREDITS)

MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2
AND
MATH3555 Complex Analysis
OR
MATH3560 Metric Spaces
AND Three (3) Credits from Level II/III Mathematics Elective Courses

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

SCIENCE AND MANAGEMENT

LEVEL I

**REQUIRED LEVEL I COURSES FOR THE SCIENCE
MAJOR**

PLUS

MATH1230 Introductory Applied Statistics 1

OR

ECON1005 Introductory Statistics

ACCT1002 Introduction to Financial Accounting

ACCT1003 Introduction to Cost and Management
Accounting

ECON1001 Introduction to Microeconomics

ECON1003 Maths for Social Sciences I

MGMT1000 Information Technology Literacy**

MGMT1001 Introduction to Management

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign
Language course.

**MGMT1000 is not required for Computer Science,
Information Technology or Electronics majors. Such
students are required to take COMP1205 which is a part of
their degree programme.

LEVELS II & III (60 CREDITS)

**TEN COURSES (30 CREDITS) OF REQUIRED LEVEL
II/III COURSES FOR SCIENCE MAJOR**

AND

MKTG2001 Principles of Marketing

MGMT2006 Information Systems I

MGMT2008 Organizational Behaviour

MGMT2020 Managerial Economics

MGMT2021 Business Law I

MGMT2023 Financial Management I

MGMT2026 Production & Operations Management

MGMT3017 Human Resources Management

MGMT3031 Business Strategy and Policy

MGMT3033 Business, Government and Society

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

SCIENCE WITH MANAGEMENT

LEVEL I (33-45 CREDITS)

**REQUIRED LEVEL I COURSES FOR THE SCIENCE
MAJOR**

PLUS

MATH1230 Introductory Applied Statistics 1

OR

ECON1005 Introductory Statistics

ACCT1002 Introduction to Financial Accounting

ACCT1003 Introduction to Cost and Management
Accounting

ECON1001 Introduction to Microeconomics

ECON1003 Maths for Social Sciences I

MGMT1000 Information Technology Literacy**

MGMT1001 Introduction to Management

LEVELS II & II (60 CREDITS)

**AND Fifteen (15) Level II/III Credits from any
Faculty. Three (3) of these credits can come from
a Co-curricular course.**

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one (1) of these with a Foreign
Language course.

**MGMT1000 is not required for Computer Science,
Information Technology or Electronics majors. Such
students are required to take COMP1205 which is a
part of their degree programme.

**TEN COURSES (30 CREDITS) OF REQUIRED LEVEL
II/III COURSES FOR SCIENCE MAJOR**

AND

MKTG2001 Principles of Marketing

MGMT2006 Information Systems I

MGMT2008 Organizational Behaviour

MGMT2023 Financial Management I

MGMT3017 Human Resources Management

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

The following Science Majors are currently being offered with a Major/Minor in Management:

BSc BIOCHEMISTRY AND MANAGEMENT

LEVEL I (45 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management Accounting
ECON1001 Introduction to Microeconomics
ECON1003 Maths for Social Sciences I
MGMT1000 Information Technology Literacy
MGMT1001 Introduction to Management
AND
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (36 CREDITS)

BIOC2365 Primary Metabolism
BIOC2366 Protein Biochemistry
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
MKTG2001 Principles of Marketing
MGMT2006 Information Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2021 Business Law I

MGMT2023 Financial Management I

MGMT2026 Production & Operations Management

AND Three (3) Credits from:

BIOC2370 Cell Signal
BIOL2166 Advanced Genetics I

LEVEL III (24 CREDITS)

BIOC3265 Principles of Bioinformatics
MGMT3017 Human Resources Management
MGMT3031 Business Strategy and Policy
MGMT3033 Business, Government and Society

AND Twelve (12) Credits from:

BIOC2900 Biochemistry Exchange Elective
BIOC3370 Basis of Human Disease
BIOC3260 Principles of Biotechnology
BIOC3261 Mitochondrial Bioenergetics
BIOC3050 Biochemistry of a Changing Planet
BIOC3990 Biochemistry Project (6 credits)
BIOL3025 Molecular Plant Pathology
CHEM3635 Biological Inorganic Chemistry

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc BIOCHEMISTRY WITH MANAGEMENT

LEVEL I (45 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management Accounting
ECON1001 Introduction to Microeconomics
ECON1003 Maths for Social Sciences I
MGMT1000 Information Technology Literacy
MGMT1001 Introduction to Management

AND

MATH1230 Introductory Applied Statistics 1

OR

ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (27 CREDITS)

BIOC2365 Primary Metabolism
BIOC2366 Protein Biochemistry
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
MKTG2001 Principles of Marketing
MGMT2006 Information Systems I
MGMT2008 Organizational Behaviour
MGMT2023 Financial Management I

AND Three (3) Credits from:

BIOC2370 Cell Signal
BIOL2166 Advanced Genetics I

LEVEL III (33 CREDITS)

BIOC3265 Principles of Bioinformatics
MGMT3017 Human Resources Management
AND Twelve (12) Credits from:
BIOC2900 Biochemistry Exchange Elective
BIOC3370 Basis of Human Disease
BIOC3260 Principles of Biotechnology
BIOC3261 Mitochondrial Bioenergetics
BIOC3050 Biochemistry of a Changing Planet
BIOC3990 Biochemistry Project (6 credits)
BIOL3025 Molecular Plant Pathology
CHEM3635 Biological Inorganic Chemistry

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc BIOLOGY AND MANAGEMENT

LEVEL I (33 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management Accounting
ECON1001 Introduction to Microeconomics
ECON1003 Maths for Social Sciences I
MGMT1000 Information Technology Literacy
MGMT1001 Introduction to Management
AND
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (45 CREDITS)

BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
MKTG2001 Principles of Marketing
MGMT2006 Information Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2021 Business Law I
MGMT2023 Financial Management I
MGMT2026 Production & Operations Management
AND Six (6) Credits from:

BIOC2365 Primary Metabolism
ECOL2460 Essentials of Ecology
MICR2260 Essentials Microbiology

AND Six (6) Credits from:

BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals

AND Six (6) Credits from Levels II/III Biological Sciences Elective Courses:

Level II BIOC/BIOL/ECOL/MICR courses
Level III BIOC/BIOL/ECOL/MICR courses

LEVEL III (15 CREDITS)

MGMT3017 Human Resources Management
MGMT3031 Business Strategy and Policy
MGMT3033 Business, Government and Society

AND Six (6) Credits from Level III Biological Sciences Elective Courses:

Level III BIOC/BIOL/ECOL/MICR courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing
AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc BIOLOGY WITH MANAGEMENT

LEVEL I (33 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management Accounting
ECON1001 Introduction to Microeconomics
ECON1003 Maths for Social Sciences I
MGMT1000 Information Technology Literacy
MGMT1001 Introduction to Management
AND
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (36 CREDITS)

BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
MKTG2001 Principles of Marketing
MGMT2006 Information Systems I
MGMT2008 Organizational Behaviour
MGMT2023 Financial Management I

AND Six (6) Credits from:

BIOC2365 Primary Metabolism
ECOL2460 Essentials of Ecology
MICR2260 Essentials Microbiology

AND Six (6) Credits from:

BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals

AND Six (6) Credits from Levels II/III Biological Sciences Elective Courses:

Level II BIOC/BIOL/ECOL/MICR courses
Level III BIOC/BIOL/ECOL/MICR courses

LEVEL III (9 CREDITS)

MGMT3017 Human Resources Management
Six (6) Credits from Level III Biological Sciences Elective Courses:
Level III BIOC/BIOL/ECOL/MICR courses

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc CHEMISTRY AND MANAGEMENT

LEVEL I (33 CREDITS)

CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management Accounting
ECON1001 Introduction to Microeconomics
ECON1003 Maths for Social Sciences I
MGMT1000 Information Technology Literacy
MGMT1001 Introduction to Management
AND
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (39 CREDITS)

CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis
MKTG2001 Principles of Marketing
MGMT2006 Information Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2021 Business Law I
MGMT2023 Financial Management I
MGMT2026 Production & Operations Management

LEVEL III (21 CREDITS)

CHEM3625 Laboratory Methods in Chemistry III
MGMT3017 Human Resources Management
MGMT3031 Business Strategy and Policy
MGMT3033 Business, Government and Society
AND Six (6) Credits from:
CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry
AND Three (3) Credits from:
CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and Toxicology**

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course:
CHEM2725 Chemistry of the Environment

.

BSc CHEMISTRY WITH MANAGEMENT

LEVEL I (33 CREDITS)

CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost and Management Accounting
ECON1001 Introduction to Microeconomics
ECON1003 Maths for Social Sciences I
MGMT1000 Information Technology Literacy
MGMT1001 Introduction to Management
AND
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis
MKTG2001 Principles of Marketing
MGMT2006 Information Systems I
MGMT2008 Organizational Behaviour
MGMT2023 Financial Management I

LEVEL III (30 CREDITS)

CHEM3625 Laboratory Methods in Chemistry III
MGMT3017 Human Resources Management
AND Six (6) Credits from:
CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry
AND Three (3) Credits from:
CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and Toxicology**

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.
**Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course: CHEM2725 Chemistry of the Environment.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ECOLOGY AND MANAGEMENT

LEVEL I (33 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost & Management Accounting
ECON1001 Introduction to Microeconomics
ECON1003 Maths for Social Sciences I
MGMT1000 Information Technology Literacy
MGMT1001 Introduction to Management
AND
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (33 CREDITS):

BIOL2373 Skills for Biologists
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ECOL2462 Marine Biota
MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2021 Business Law I
MGMT2023 Financial Management I
MGMT2026 Production & Operations Management

LEVEL III (27 CREDITS)

ECOL3100 Statistics for Ecologists
ECOL3461 Ecology of a Changing Planet
MGMT3017 Human Resources Management
MGMT3031 Business Strategy and Policy
MGMT3033 Business, Government and Society
AND Twelve (12) Credits from:
BIOC2371 Molecular Techniques
BIOL2372 Plants for Caribbean Landscapes¹
ECOL3454 Fisheries Biology
ECOL3460 Biology & Ecology of Coral Reefs
ECOL3463 Tropical Crop Ecology
ECOL3462 Behaviour: An Evolutionary Approach
ECOL3990 Ecology Project (6 Credits)
ENSC2000 Essentials of Oceanography
MICR3266 Ecology of Microorganisms

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ECOLOGY WITH MANAGEMENT

LEVEL I (33 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost & Management Accounting
ECON1001 Introduction to Microeconomics
ECON1003 Maths for Social Sciences I
MGMT1000 Information Technology Literacy
MGMT1001 Introduction to Management
AND
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (24 CREDITS):

BIOL2373 Skills for Biologists
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ECOL2462 Marine Biota
MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2023 Financial Management I

LEVEL III (21 CREDITS)

ECOL3100 Statistics for Ecologists
ECOL3461 Ecology of a Changing Planet
MGMT3017 Human Resources Management
AND Twelve (12) Credits from:
BIOC2371 Molecular Techniques
BIOL2372 Plants for Caribbean Landscapes
ECOL3454 Fisheries Biology
ECOL3460 Biology & Ecology of Coral Reefs
ECOL3463 Tropical Crop Ecology
ECOL3462 Behaviour: An Evolutionary Approach
ECOL3990 Ecology Project (6 credits)
ENSC2000 Essentials of Oceanography
MICR3266 Ecology of Microorganisms

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ENVIRONMENTAL SCIENCE AND MANAGEMENT

LEVEL I (33 CREDITS)

METE1110 Introduction to Oceans & Climate
OR ENSC1000 Earth and its Environment
AND ENSC1005 Landform Dynamics
AND Six (6) Level I Credits from FST Courses
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost & Management Accounting
ECON1001 Introduction to Microeconomics
ECON1003 Maths for Social Sciences I
MGMT1000 Information Technology Literacy
MGMT1001 Introduction to Management
AND
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)*

LEVEL II (30 CREDITS)

ENSC2000 Essentials of Oceanography
ENSC2005 Earth Life Cycles
ENSC2002 Earth's Climate
MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2021 Business Law
MGMT2023 Financial Management I
MGMT2026 Production & Operations Management

LEVEL III (30 CREDITS)

MGMT3017 Human Resources Management
MGMT3031 Business Strategy and Policy
MGMT3033 Business, Government and Society

AND TWENTY-ONE (21) CREDITS FROM:

CHEM2725 Chemistry of the Environment
ECOL2461 Caribbean Island Biodiversity
ECOL2460 Essentials of Ecology
ENSC2003 Sustainable Energy Systems
ENSC2900 Environmental Science Exchange
HIST2810 Global Environmental Issues: Past, Present, and Future
CHEM3218 Environmental Chemistry and Toxicology
ENSC3000 Climate Variation and Change
ENSC3001 Natural Hazards and Disasters
ENSC3005 Urban Geomorphology
ENSC3020 Case Study in Environmental Science
ENSC3090 Professional Placement for Environmental Science
ENSC3103 Landscapes and Landforms of the Lesser Antilles
ENSC3900 Research Project in Environmental Science (6 credits)
GOVT3025 International Environmental Politics
HESC3003 Environmental Health
LAW3450 Caribbean Environmental Law **OR**
LAW3460 International Environmental Law
METE3505 Climate, Biosphere and Ecosystems
PHIL3100 Environmental Ethics

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR FOUN1008 An Introduction to Professional Writing
AND

**FOUN1101 Caribbean Civilization
**FOUN1301 Law, Economy, Governance and Society

***Students must complete 30 Level II/III FST credits.**

****A student may substitute one of these with a Foreign Language course.**

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ENVIRONMENTAL SCIENCE WITH MANAGEMENT

LEVEL I (33 CREDITS)

METE1110 Introduction to Oceans & Climate

OR ENSC1000 Earth and its Environment

AND ENSC1005 Landform Dynamics

AND Six (6) Level I Credits from FST Courses

ACCT1002 Introduction to Financial Accounting

ACCT1003 Introduction to Cost & Management Accounting

ECON1001 Introduction to Microeconomics

ECON1003 Maths for Social Sciences I

MGMT1000 Information Technology Literacy

MGMT1001 Introduction to Management

AND

MATH1230 Introductory Applied Statistics 1

OR

ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)*

LEVEL II (21 CREDITS)

ENSC2000 Essentials of Oceanography

ENSC2005 Earth Life Cycles

ENSC2002 Earth's Climate

MKTG2001 Principles of Marketing

MGMT2006 Management Info. Systems I

MGMT2008 Organizational Behaviour

MGMT2023 Financial Management I

LEVEL III (39 CREDITS)

MGMT3017 Human Resources Management

TWENTY-ONE (21) CREDITS FROM:

CHEM2725 Chemistry of the Environment

ECOL2461 Caribbean Island Biodiversity

ECOL2460 Essentials of Ecology

ENSC2003 Sustainable Energy Systems

ENSC2900 Environmental Science Exchange

CHEM3218 Environmental Chemistry and Toxicology

ENSC3000 Climate Variation and Change

ENSC3001 Natural Hazards and Disasters

ENSC3005 Urban Geomorphology

ENSC3090 Professional Placement for Environmental Science

ENSC3020 Case Study in Environmental Science

ENSC3900 Research Project in Environmental Science (6 credits)

GOVT3025 International Environmental Politics

HESC3003 Environmental Health

HIST2810 Global Environmental Issues: Past, Present, and Future

LAW3450 Caribbean Environmental Law **OR**

LAW3460 International Environmental Law

METE3505 Climate, Biosphere and Ecosystems

PHIL3100 Environmental Ethics

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

**FOUN1101 Caribbean Civilization

**FOUN1301 Law, Economy, Governance and Society

***Students must complete 30 Level II/III FST credits.**

**A student may substitute one of these with a Foreign Language course.

.

THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026

BSc MICROBIOLOGY AND MANAGEMENT

LEVEL I (33 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost & Management Accounting
ECON1001 Introduction to Microeconomics
ECON1003 Maths for Social Sciences I
MGMT1000 Information Technology Literacy
MGMT1001 Introduction to Management
AND
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (39 CREDITS):

BIOC2365 Primary Metabolism
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
MICR2260 Essential Microbiology
MICR2261 Eukaryotic Microbes
MICR2262 Methods in Microbiology
MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2021 Business Law I
MGMT2023 Financial Management I
MGMT2026 Production & Operations Management

LEVEL III (21 CREDITS)

MGMT3017 Human Resources Management
MGMT3031 Business Strategy and Policy
MGMT3033 Business, Government and Society
AND Twelve (12) Credits from:
BIOL3025 Molecular Plant Pathology
MICR2900 Microbiology Exchange Elective
MICR3265 Microbiology of Food
MICR3266 Ecology of Microorganisms
MICR3267 Essential Virology
MICR3268 Microbial Pathogenesis
MICR3990 Microbiology Project (6 Credits)
BIOC2370 Cell Signals**
BIOL2166 Advanced Genetics**
BIOC3260 Principles of Biotechnology**
HESC3003 Environmental Health**
PHIL3120 Biomedical Ethics**

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.
**No more than two (2) of these can be used for the Microbiology Major.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc MICROBIOLOGY WITH MANAGEMENT

LEVEL I (33 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost & Management Accounting
ECON1001 Introduction to Microeconomics
ECON1003 Maths for Social Sciences I
MGMT1000 Information Technology Literacy
MGMT1001 Introduction to Management
AND
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS):

BIOC2365 Primary Metabolism
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
MICR2260 Essential Microbiology
MICR2261 Eukaryotic Microbes
MICR2262 Methods in Microbiology
MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2023 Financial Management I

LEVEL III (30 CREDITS)

MGMT3017 Human Resources Management
Twelve (12) Credits from:
BIOL3025 Molecular Plant Pathology
MICR2900 Microbiology Exchange Elective
MICR3265 Microbiology of Food
MICR3266 Ecology of Microorganisms
MICR3267 Essential Virology
MICR3268 Microbial Pathogenesis
MICR3990 Microbiology Project (6 Credits)
BIOC2370 Cell Signals**
BIOL2166 Advanced Genetics**
BIOC3260 Principles of Biotechnology**
HESC3003 Environmental Health**
PHIL3120 Biomedical Ethics**

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

**A student may substitute one of these with a Foreign Language course.

**No more than two (2) of these can be used for the Microbiology Major.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ELECTRONICS AND MANAGEMENT

LEVEL I (33 CREDITS)

ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
COMP1205 Computing I
MATH1190 Calculus A
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost & Management Accounting
ECON1001 Introduction to Microeconomics
MGMT1001 Introduction to Management
AND
MATH1230 Introductory Applied Statistics 1
OR ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (33 CREDITS)

MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2021 Business Law I
MGMT2023 Financial Management I
MGMT2026 Production & Operations Management

AND At Least Twelve (12) Credits from:

ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication System I
ELET2235 Automation Technology & Applications
ELET2240 Sensor & Actuation Devices
PHYS2400 Mathematical Methods in Physics I

LEVEL III (27 CREDITS)

MGMT3017 Human Resources Management
MGMT3031 Business Strategy and Policy
MGMT3033 Business, Government and Society
AND At Most Eighteen (18) credits from:
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems I
ELET3240 Digital Communication Systems II
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project (6 credits)
ELET3298 Group Electronics Research Project (6 credits)
ELET3955 Electronics Internship

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.
**Students must complete a minimum total of 30 credits from Electronics courses.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ELECTRONICS WITH MANAGEMENT

LEVEL I (33 CREDITS)

ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
COMP1205 Computing I
MATH1190 Calculus A
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost & Management Accounting
ECON1001 Introduction to Microeconomics
MGMT1001 Introduction to Management
AND
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (24 CREDITS)

MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2023 Financial Management I
AND At Least Twelve (12) Credits from:**
ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication System I
ELET2235 Automation Technology & Applications
ELET2240 Sensor & Actuation Devices
PHYS2400 Mathematical Methods in Physics I

LEVEL III (36 CREDITS)

MGMT3017 Human Resources Management
At Most Eighteen (18) Credits from:**
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems I
ELET3240 Digital Communication Systems II
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project (6 credits)
ELET3298 Group Electronics Research Project (6 credits)
ELET3955 Electronics Internship

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.
**Students must complete a minimum total of 30 credits from Electronics courses.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc PHYSICS AND MANAGEMENT

LEVEL I (36 CREDITS)

PHYS1200 Physics I: Mechanics of Translational Motion

PHYS1205 Physics II: Rotation, Waves & Thermodynamics

PHYS1210 Physics III: Electric Fields, Currents & Circuits

PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics

MATH1190 Calculus A

MATH1195 Calculus B

ACCT1002 Introduction to Financial Accounting

ACCT1003 Introduction to Cost & Management Accounting

ECON1001 Introduction to Microeconomics

MGMT1000 Information Technology Literacy

MGMT1001 Introduction to Management

AND

MATH1230 Introductory Applied Statistics 1

OR

ECON1005 Introductory Statistics

MGMT2021 Business Law I

MGMT2023 Financial Management I

MGMT2026 Production & Operations Management

LEVEL III (24 CREDITS)

PHYS3420 Electromagnetic Theory I

PHYS3480 Theory of Quantum Mechanics

PHYS3485 Theory of Statistical Mechanics

MGMT3017 Human Resources Management

MGMT3031 Business Strategy and Policy

MGMT3033 Business, Government and Society

AND Six (6) Credits from Physics Elective Courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

LEVELS II & III (60 CREDITS)

LEVEL II (36 CREDITS)

PHYS2400 Mathematical Methods in Physics I

PHYS2405 Mathematical Methods in Physics II

PHYS2410 Modern Physics

PHYS2415 Theory of Classical Mechanics

PHYS2420 Advanced Physics Laboratory I

MKTG2001 Principles of Marketing

MGMT2006 Management Info. Systems I

MGMT2008 Organizational Behaviour

MGMT2020 Managerial Economics

BSc PHYSICS WITH MANAGEMENT

LEVEL I (36 CREDITS)

PHYS1200 Physics I: Mechanics of Translational Motion

PHYS1205 Physics II: Rotation, Waves & Thermodynamics

PHYS1210 Physics III: Electric Fields, Currents & Circuits

PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics

MATH1190 Calculus A

MATH1195 Calculus B

ACCT1002 Introduction to Financial Accounting

ACCT1003 Introduction to Cost & Management Accounting

ECON1001 Introduction to Microeconomics

MGMT1000 Information Technology Literacy

MGMT1001 Introduction to Management

AND

MATH1230 Introductory Applied Statistics 1

OR

ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (27 CREDITS)

PHYS2400 Mathematical Methods in Physics I

PHYS2405 Mathematical Methods in Physics II

PHYS2410 Modern Physics

PHYS2415 Theory of Classical Mechanics

PHYS2420 Advanced Physics Laboratory I

MKTG2001 Principles of Marketing

MGMT2006 Management Info. Systems I

MGMT2008 Organizational Behaviour

MGMT2023 Financial Management I

LEVEL III (33 CREDITS)

MGMT3017 Human Resources Management

PHYS3420 Electromagnetic Theory I

PHYS3480 Theory of Quantum Mechanics

PHYS3485 Theory of Statistical Mechanics

AND Six (6) Credits from Physics Elective Courses

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

BSc METEOROLOGY AND MANAGEMENT

LEVEL I (36 CREDITS)

METE1110 Introduction to Oceans and Climate
METE1125 Meteorological Observations,
Instruments and Basic Analysis
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
METE1400 Mathematical Methods for Meteorology
MATH1190 Calculus A
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost & Management
Accounting
ECON1001 Introduction to Microeconomics
MGMT1000 Information Technology Literacy
MGMT1001 Introduction to Management
AND
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (36 CREDITS)

METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2125 Dynamic Meteorology
METE2210 Synoptic Meteorology
METE2215 Synoptic Meteorology Lab I
MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2020 Managerial Economics
MGMT2021 Business Law I
MGMT2023 Financial Management I
MGMT2026 Production & Operations Management

LEVEL III (24 CREDITS)

METE3110 Advanced Dynamic Meteorology
METE3210 Advanced Synoptic Meteorology
METE3215 Synoptic Meteorology Lab II
METE3310 The Tropics and Tropical Weather
Systems
MGMT3017 Human Resources Management
MGMT3031 Business Strategy and Policy
MGMT3033 Business, Government and Society
AND At Least Three (3) Credits from:
METE2305 Fundamentals of Hydrometeorology
METE3420 Radar Meteorology
METE3425 Satellite Meteorology
METE3505 Climate, Biosphere and Ecosystems
METE3600 Numerical Weather Prediction and
Computational Methods

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign
Language course.

BSc METEOROLOGY WITH MANAGEMENT

LEVEL I (36 CREDITS)

METE1110 Introduction to Oceans and Climate
METE1125 Meteorological Observations,
Instruments and Basic Analysis
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
METE1400 Mathematical Methods for Meteorology
MATH1190 Calculus A
ACCT1002 Introduction to Financial Accounting
ACCT1003 Introduction to Cost & Management
Accounting
ECON1001 Introduction to Microeconomics
MGMT1000 Information Technology Literacy
MGMT1001 Introduction to Management
AND
MATH1230 Introductory Applied Statistics 1
OR
ECON1005 Introductory Statistics

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2125 Dynamic Meteorology
METE2210 Synoptic Meteorology
METE2215 Synoptic Meteorology Lab I
MKTG2001 Principles of Marketing
MGMT2006 Management Info. Systems I
MGMT2008 Organizational Behaviour
MGMT2023 Financial Management I

LEVEL III (30 CREDITS)

METE3110 Advanced Dynamic Meteorology
METE3210 Advanced Synoptic Meteorology
METE3215 Synoptic Meteorology Lab II
METE3310 The Tropics and Tropical Weather
Systems
MGMT3017 Human Resources Management
AND At Least Three (3) Credits from:
METE2305 Fundamentals of Hydrometeorology
METE3420 Radar Meteorology
METE3425 Satellite Meteorology
METE3505 Climate, Biosphere and Ecosystems
METE3600 Numerical Weather Prediction and
Computational Methods

**AND Twelve (12) Level II/III Credits from any
Faculty. Three (3) of these credits can come from
a Co-curricular course.**

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign
Language course.

BSc SCIENCE WITH SUSTAINABLE ENERGY MANAGEMENT

LEVEL I (24-36 CREDITS)

REQUIRED LEVEL I COURSES FOR SCIENCE MAJOR

PLUS

MGMT1001 Introduction to Management

ACCT1002 Introduction to Financial Accounting

AND Three (3) Credits (1 Course) from:

ENSC1000 Earth and its Environment

METE1110 Introduction to Oceans and Climate

METE1305 Introduction to Climate Change and Society

AND Three (3) Credits (1 Course) from:

ECON1005 Introductory Statistics

MATH1230 Introductory Applied Statistics I

SOCI1005 Introductory Statistics for the Behaviour Sciences

LEVELS II & III (60 CREDITS)

THIRTY (30) CREDITS OF REQUIRED LEVEL II/III COURSES FOR SCIENCE MAJOR

AND

ENSC2003 Sustainable Energy Systems

MGMT2224 Introduction to Entrepreneurship

AND Three (3) Credits (1 Course) from:

MGMT2026 Production & Operations Management

MGMT3031 Business Strategy and Policy

MGMT3056 Project Management

AND Three (3) Credits (1 Course) from:

BIOL2054 Bioenergy and Biofuels

BIOL2466 Tropical Energy and Bioprocessing

PHYS3460 Physics of Sustainable Energy Systems

AND Three (3) Credits (1 Course) from:

ENSC3020 Case Study in Environmental Sciences

ENSC3090 Professional Placement for

Environmental Science

PHYS3490 Physics One-Semester Research Project

BIOL3901 Multidisciplinary Project

PHYS3955 Physics Internship

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

PROGRAMMES WITH THE FACULTY OF HUMANITIES & EDUCATION

Under an agreement with the Faculty of Humanities & Education, a limited number of students will be allowed to pursue the following programmes, subject to timetable restrictions: -

Science Major & Psychology Major
Science Major with Psychology Minor
Science Major with Spanish Minor
Science Major with Education Minor

The Psychology Major comprises 30 credits of specified advanced courses while the Psychology, Education and Spanish Minor each comprise 15 credits of specified advanced courses. In addition, students must satisfy the requirements of their Science Major and complete a minimum total of 93 credits.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

SCIENCE AND PSYCHOLOGY

LEVEL I (24-33 CREDITS)

REQUIRED LEVEL I COURSES FOR SCIENCE MAJOR

PLUS

PSYC1025 Discovering Psychology: The Sciences of Humanity

PSYC1030 Exploring the Social Self in the Wider World

PSYC1013 Introduction to Psychological Research and Report Writing

LEVELS II & III (60 CREDITS)

THIRTY (30) CREDITS OF REQUIRED LEVEL II/III COURSES FOR SCIENCE MAJOR

AND

PSYC2003 Foundations of Neuropsychology

PSYC2004 Personality Psychology

PSYC2008 Cognitive Psychology

PSYC2014 Quantitative Exploration of Psychological Experiences

PSYC2020 Psychopathology and Well-being

PSYC2022 Psychology of Conception to Adolescence

PSYC3017 Contemporary Personality Theories and Assessments

PSYC3011 Capstone Research Project in Psychology** (6 Credits)

AND Three (3) Credits from the following

Psychology Elective Courses:

PSYC3018 Forensic Psychology

PSYC3020 Educational Psychology

PSYC3028 Psychological Counselling Skills

PSYC3030 Clinical Psychology

PSYC3032 Psychology of Adulthood and Ageing

PSYC3065 Psychology of Addiction and Recovery

PSYC3066 Psychology of Human Spirituality: A Transpersonal Approach

PSYC3067 Psychological First Aid: Trauma, Survival and Resilience

PSYC3068 Health Psychology

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**Students registered for a Science Research Project course (e.g.: BIOC3990, BIOL3990, MICR3990, ECOL3990, COMP3495, ELET3295, MATH3590, PHYS3495) must replace PSYC3011 by 6 credits from the electives listed above.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

SCIENCE WITH PSYCHOLOGY

LEVEL I (24-33 CREDITS)

REQUIRED LEVEL I COURSES FOR SCIENCE MAJOR

PLUS

PSYC1025 Discovering Psychology: The Sciences of Humanity

PSYC1030 Exploring the Social Self in the Wider World

PSYC1013 Introduction to Psychological Research and Report Writing

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

LEVELS II & III (60 CREDITS)

THIRTY (30) CREDITS OF REQUIRED LEVEL II/III

COURSES FOR SCIENCE MAJOR

AND

PSYC2003 Foundations of Neuropsychology

PSYC2004 Personality Psychology

PSYC2014 Quantitative Exploration of Psychological Experiences

PSYC2022 Psychology of Conception to Adolescence

PSYC3016 Minor Research Project Proposal in Psychology

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

SCIENCE WITH SPANISH

LEVEL I (24-30 CREDITS)

REQUIRED LEVEL I COURSES FOR SCIENCE MAJOR

PLUS

SPAN1001 Spanish Language IA

SPAN1002 Spanish Language IB

AND Three (3) or Six (6) Level I Credits from any Faculty**

LEVELS II & III (60 CREDITS)

THIRTY (30) CREDITS OF REQUIRED LEVEL II/III COURSES FOR SCIENCE MAJOR

AND

SPAN2001 Spanish Language IIA

SPAN2002 Spanish Language IIB

SPAN2218 Contemporary Issues in the Hispanic World

SPAN3502 International Business Spanish

SPAN3503 Spanish for Tourism

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**As needed to satisfy the Level I Science Requirement.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

SCIENCE WITH EDUCATION

LEVEL I (24-27 CREDITS)

**REQUIRED LEVEL I COURSES FOR SCIENCE MAJOR
PLUS**

EDPS1001 Introduction to Human Development

**AND Six (6) or Nine (9) Level I Credits from any
Faculty****

**AND Fifteen (15) Level II/III Credits from any
Faculty. Three (3) of these credits can come from
a Co-curricular course.**

LEVELS II & III (60 CREDITS)

**THIRTY (30) CREDITS OF REQUIRED LEVEL II/III
COURSES FOR SCIENCE MAJOR**

AND

EDCU2101 Introduction to Curriculum, Theory,
Planning & Practice

EDRS2201 Introduction to Research Methods in
Education

EDSO3102 The Social Context of Education

AND One of the following:

EDMA2111 The Structure and Nature of
Mathematics

EDSC2110 The Structure and Nature of Science

AND One of the following:

EDPH2016 Philosophy of Education

EDME2211 Testing, Measurement & Evaluation I

EDEA2304 Introduction to Educational

Administration

EDSE2924 Introduction to Special Education

EDTK3304 Media & Technology in Education

EDTE3404 Issues in Teacher Education

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign
Language course.

**As needed to satisfy the Level I Science Requirement.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

The following Science Majors are currently being offered with a Major/Minor in Education, Psychology and Spanish:

BSc BIOCHEMISTRY AND PSYCHOLOGY

LEVEL I (33 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World

LEVEL II & III (60 CREDITS)

LEVEL II (33 CREDITS)

BIOC2365 Primary Metabolism
BIOC2366 Protein Biochemistry
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2008 Cognitive Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2020 Psychopathology and Wellbeing
PSYC2022 Psychology of Conception to Adolescence

AND Three (3) Credits from:

BIOL2166 Advanced Genetics I
BIOC2370 Cell Signals

LEVEL III (27 CREDITS)

BIOC3265 Principles of Bioinformatics
PSYC3011 Capstone Research Project in Psychology (6 credits)
PSYC3017 Contemporary Personality Theories and Assessment

AND Twelve (12) Credits from:

BIOL2900 Biochemistry Exchange Elective
BIOC3260 Principles of Biotechnology
BIOC3261 Mitochondrial Bioenergetics
BIOC3370 Basis of Human Disease
BIOC3050 Biochemistry of a Changing Planet
BIOC3990 Biochemistry Project (6 credits)
BIOL3025 Molecular Plant Pathology
CHEM3635 Biological Inorganic Chemistry

AND Three (3) Credits from:

PSYC3018 Forensic Psychology
PSYC3020 Educational Psychology
PSYC3028 Psychological Counselling Skills
PSYC3030 Clinical Psychology
PSYC3032 Psychology of Adulthood and Ageing
PSYC3065 Psychology of Addiction and Recovery
PSYC3066 Psychology of Human Spirituality: A Transpersonal Approach
PSYC3067 Psychological First Aid: Trauma, Survival and Resilience
PSYC3068 Health Psychology

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc BIOCHEMISTRY WITH PSYCHOLOGY

LEVEL I (33 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World

LEVEL II & III (60 CREDITS)

LEVEL II (27 CREDITS)

BIOC2365 Primary Metabolism
BIOC2366 Protein Biochemistry
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2022 Psychology of Conception to Adolescence

AND Three (3) Credits from:

BIOL2166 Advanced Genetics I
BIOC2370 Cell Signals

LEVEL III (33 CREDITS)

Six (6) Credits from:

BIOC3265 Principles of Bioinformatics
PSYC3016 Minor Research Project Proposal in Psychology

AND Twelve (12) Credits from:

BIOL2900 Biochemistry Exchange Elective
BIOC3260 Principles of Biotechnology
BIOC3261 Mitochondrial Bioenergetics
BIOC3370 Basis of Human Disease
BIOC3050 Biochemistry of a Changing Planet
BIOC3990 Biochemistry Project (6 credits)
BIOL3025 Molecular Plant Pathology
CHEM3635 Biological Inorganic Chemistry

AND Fifteen (15) Level II/III Credits from any Faculty:

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc BIOLOGY AND PSYCHOLOGY

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
PSYC1025 Discovering Psychology: The Sciences of Humanity
PSYC1030 Exploring the Social Self in the Wider World
PSYC1013 Introduction to Psychological Research and Report Writing

AND Three (3) Level I Credits from any Faculty.

LEVELS II & III (60 CREDITS)

LEVEL II (42 CREDITS)

BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2008 Cognitive Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2020 Psychopathology and Well-being
PSYC2022 Psychology of Conception to Adolescence

AND Six (6) Credits from:

BIOC2365 Primary Metabolism
ECOL2460 Essentials of Ecology
MICR2260 Essentials Microbiology

AND Six (6) Credits from:

BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals

AND Six (6) Credits from Levels II/III Biological Sciences Elective Courses:

Level II BIOC/BIOL/ECOL/MICR courses
Level III BIOC/BIOL/ECOL/MICR courses

LEVEL III (18 CREDITS)

PSYC3017 Contemporary Personality Theories and Assessments

PSYC3011 Capstone Research Project in Psychology** (6 credits)

AND Three (3) Credits (One (1) course) from the following Psychology Elective Courses:

PSYC3018 Forensic Psychology
PSYC3020 Educational Psychology
PSYC3028 Psychological Counselling Skills
PSYC3030 Clinical Psychology
PSYC3032 Psychology of Adulthood and Ageing
PSYC3065 Psychology of Addiction and Recovery
PSYC3066 Psychology of Human Spirituality: A Transpersonal Approach
PSYC3067 Psychological First Aid: Trauma, Survival and Resilience
PSYC3068 Health Psychology

AND Six (6) Credits from Level III BIOC/BIOL/ECOL/MICR Elective courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR FOUN1008 An Introduction to Professional Writing **AND**

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

BSc BIOLOGY WITH PSYCHOLOGY

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
PSYC1025 Discovering Psychology: The Sciences of Humanity
PSYC1030 Exploring the Social Self in the Wider World
PSYC1013 Introduction to Psychological Research and Report Writing
AND Three (3) Level I Credits from any Faculty.

LEVELS II & III (60 CREDITS)

LEVEL II (36 CREDITS)

BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2022 Psychology of Conception to Adolescence

AND Six (6) Credits from:

BIOC2365 Primary Metabolism
ECOL2460 Essentials of Ecology
MICR2260 Essentials Microbiology

AND Six (6) Credits from:

BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals

AND Six (6) Credits from Levels II/III Biological Sciences Elective Courses:

Level II BIOC/BIOL/ECOL/MICR courses
Level III BIOC/BIOL/ECOL/MICR courses

LEVEL III (24 CREDITS)

PSYC3016 Minor Research Project Proposal in Psychology
AND Six (6) Credits from Level III BIOC/BIOL/ECOL/MICR Elective courses

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR

FOUN1008 An Introduction to Professional Writing
AND

*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

BSc CHEMISTRY AND PSYCHOLOGY

LEVEL I (24 CREDITS)

CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
PSYC1025 Discovering Psychology: The Sciences of Humanity
PSYC1030 Exploring the Social Self in the Wider World
PSYC1013 Introduction to Psychological Research and Report Writing

AND Three (3) Level I Credits from any Faculty.

LEVELS II & III (60 CREDITS)

LEVEL II (36 CREDITS)

CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2008 Cognitive Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2020 Psychopathology and Well-being
PSYC2022 Psychology of Conception to Adolescence

LEVEL III (24 CREDITS)

CHEM3625 Laboratory Methods in Chemistry III
PSYC3017 Contemporary Personality Theories and Assessments
PSYC3011 Capstone Research Project in Psychology** (6 credits)

AND Six (6) Credits from:

CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry
AND Three (3) Credits from:
CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and Toxicology**

AND Three (3) Credits from the following Psychology Elective Courses:

PSYC3018 Forensic Psychology
PSYC3020 Educational Psychology
PSYC3028 Psychological Counselling Skills
PSYC3030 Clinical Psychology
PSYC3032 Psychology of Adulthood and Ageing
PSYC3065 Psychology of Addiction and Recovery
PSYC3066 Psychology of Human Spirituality: A Transpersonal Approach
PSYC3067 Psychological First Aid: Trauma, Survival and Resilience
PSYC3068 Health Psychology

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

BSc CHEMISTRY WITH PSYCHOLOGY

LEVEL I (24 CREDITS)

CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
PSYC1025 Discovering Psychology: The Sciences of Humanity
PSYC1030 Exploring the Social Self in the Wider World
PSYC1013 Introduction to Psychological Research and Report Writing

AND Three (3) Level I Credits from any Faculty.

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2022 Psychology of Conception to Adolescence

LEVEL III (30 CREDITS)

CHEM3625 Laboratory Methods in Chemistry III
PSYC3016 Minor Research Project Proposal in Psychology

AND Six (6) Credits from:

CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND Three (3) Credits from:

CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and Toxicology**

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc COMPUTER SCIENCE AND PSYCHOLOGY

LEVEL I (24 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
PSYC1025 Discovering Psychology: The Sciences of Humanity
PSYC1030 Exploring the Social Self in the Wider World
PSYC1013 Introduction to Psychological Research and Report Writing

LEVELS II & III (60 CREDITS)

LEVEL II (33 CREDITS)

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2008 Cognitive Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2020 Psychopathology and Well-being
PSYC2022 Psychology of Conception to Adolescence

LEVEL III (27 CREDITS)

COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
PSYC3017 Contemporary Personality Theories and Assessments

PSYC3011 Capstone Research Project in Psychology** (6 credits)
AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses
AND Three (3) Credits from the following Psychology Elective Courses:
PSYC3018 Forensic Psychology
PSYC3020 Educational Psychology
PSYC3028 Psychological Counselling Skills
PSYC3030 Clinical Psychology
PSYC3032 Psychology of Adulthood and Ageing
PSYC3065 Psychology of Addiction and Recovery
PSYC3066 Psychology of Human Spirituality: A Transpersonal Approach
PSYC3067 Psychological First Aid: Trauma, Survival and Resilience
PSYC3068 Health Psychology

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc COMPUTER SCIENCE WITH PSYCHOLOGY

LEVEL I (24 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
PSYC1025 Discovering Psychology: The Sciences of Humanity
PSYC1030 Exploring the Social Self in the Wider World
PSYC1013 Introduction to Psychological Research and Report Writing

LEVELS II & III (60 CREDITS)

LEVEL II (27 CREDITS)

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2022 Psychology of Conception to Adolescence

LEVEL III (33 CREDITS)

COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
PSYC3016 Minor Research Project Proposal in Psychology
AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ECOLOGY AND PSYCHOLOGY

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World

AND Three (3) Level I Credits from any Faculty.

LEVEL II & III (60 CREDITS)

LEVEL II (30 CREDITS)

BIOL2373 Skills for Biologists
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ECOL2462 Marine Biota
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2008 Cognitive Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2020 Psychopathology and Wellbeing
PSYC2022 Psychology of Conception to Adolescence

LEVEL III (30 CREDITS)

ECOL3100 Statistics for Ecologists
ECOL3461 Ecology of a Changing Planet
PSYC3011 Capstone Research Project in Psychology (6 Credits)
PSYC3017 Contemporary Personality Theories and Assessment

AND Twelve (12) Credits from:

BIOC2371 Molecular Techniques
BIOL2372 Plants for Caribbean Landscapes
ECOL3454 Fisheries Biology
ECOL3460 Biology & Ecology of Coral Reefs
ECOL3462 Behaviour: An Evolutionary Approach
ECOL3463 Tropical Crop Ecology
ENSC2000 Essentials of Oceanography
MICR3266 Ecology of Microorganisms

AND Three (3) Credits from:

PSYC3018 Forensic Psychology
PSYC3020 Educational Psychology
PSYC3028 Psychological Counselling Skills
PSYC3030 Clinical Psychology
PSYC3032 Psychology of Adulthood and Ageing
PSYC3065 Psychology of Addiction and Recovery
PSYC3066 Psychology of Human Spirituality: A Transpersonal Approach
PSYC3067 Psychological First Aid: Trauma, Survival and Resilience
PSYC3068 Health Psychology

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ECOLOGY WITH PSYCHOLOGY

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World

AND Three (3) Level I Credits from any Faculty.

LEVEL II & III (60 CREDITS)

LEVEL II (24 CREDITS)

BIOL2373 Skills for Biologists
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ECOL2462 Marine Biota
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2022 Psychology of Conception to Adolescence

LEVEL III (21 CREDITS)

ECOL3100 Statistics for Ecologists
ECOL3461 Ecology of a Changing Planet
PSYC3016 Minor Research Project Proposal in Psychology
AND Twelve (12) Credits from:
BIOC2371 Molecular Techniques
BIOL2372 Plants for Caribbean Landscapes
ECOL3454 Fisheries Biology
ECOL3460 Biology & Ecology of Coral Reefs
ECOL3462 Behaviour: An Evolutionary Approach
ECOL3463 Tropical Crop Ecology
ENSC2000 Essentials of Oceanography
MICR3266 Ecology of Microorganisms

AND Fifteen (15) Level II/III Credits from any Faculty:

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Governance and Society
*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ELECTRONICS AND PSYCHOLOGY

LEVEL I (27 CREDITS)

COMP1205 Computing I
ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
MATH1190 Calculus A
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World

LEVEL II & III (60 CREDITS)

LEVEL II (30 CREDITS)

PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2008 Cognitive Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2020 Psychopathology and Wellbeing
PSYC2022 Psychology of Conception to Adolescence

AND Twelve (12) Credits from:

ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation and Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication System I
ELET2235 Automation Technology and Applications
ELET2240 Sensors and Actuation Devices
PHYS2400 Mathematical Methods in Physics

LEVEL III (30 CREDITS)

PSYC3011 Capstone Research Project in Psychology (6 credits)

PSYC3017 Contemporary Personality Theories and Assessment

AND Eighteen (18) Credits from:

ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors and Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project
ELET3955 Electronics Internship

AND Three (3) Credits from:

PSYC3018 Forensic Psychology
PSYC3020 Educational Psychology
PSYC3028 Psychological Counselling Skills
PSYC3030 Clinical Psychology
PSYC3032 Psychology of Adulthood and Ageing
PSYC3065 Psychology of Addiction and Recovery
PSYC3066 Psychology of Human Spirituality: A Transpersonal Approach
PSYC3067 Psychological First Aid: Trauma, Survival and Resilience
PSYC3068 Health Psychology

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ELECTRONICS WITH PSYCHOLOGY

LEVEL I (27 CREDITS)

COMP1205 Computing I
ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
MATH1190 Calculus A
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World

LEVEL II & III (60 CREDITS)

LEVEL II (24 CREDITS)

PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2022 Psychology of Conception to Adolescence
AND Twelve (12) Credits from:
ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation and Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication System I
ELET2235 Automation Technology and Applications
ELET2240 Sensors and Actuation Devices
PHYS2400 Mathematical Methods in Physics

LEVEL III (21 CREDITS)

PSYC3016 Minor Research Project Proposal in Psychology
AND Eighteen (18) Credits from:
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors and Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project
ELET3955 Electronics Internship

AND Fifteen (15) Level II/III Credits from any Faculty.

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Governance and Society
*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ENVIRONMENTAL SCIENCE AND PSYCHOLOGY

LEVEL I (24 CREDITS)

ENC1000 Earth and its Environment
OR METE1110 Introduction to Oceans and Climate
AND ENSC1005 Landform Dynamics
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World
AND Six (6) Level I Credits from FST Courses.
AND Three (3) Level I Credits from any Faculty.

LEVEL II & III (60 CREDITS)*

LEVEL II (30 CREDITS)

ENSC2000 Essentials of Oceanography
ENSC2002 Earth's Climate
ENSC2005 Earth Life Cycles
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2008 Cognitive Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2020 Psychopathology and Wellbeing
PSYC2022 Psychology of Conception to Adolescence
AND Three (3) Credits from:

CHEM2725 Chemistry of the Environment
ENSC2003 Sustainable Energy Systems
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ENSC2900 Environmental Science Exchange
HIST2810 Global Environmental Issues: Past, Present and Future
ENSC3000 Climate Variation and Change
ENSC3001 Natural Hazards and Disasters
ENSC3005 Urban Geomorphology

ENSC3020 Case Study in Environmental Science

ENSC3090 Professional Placement for Environmental Science
ENSC3103 Landscapes and Landforms of the Lesser Antilles
ENSC3900 Research Project in Environmental Science
CHEM3218 Environmental Chemistry and Toxicology
HESC3003 Environmental Health
GOVT3025 International Environmental Politics
LAW3450 Caribbean Environmental Law **OR**
LAW3460 International Environmental Law
METE3505 Climate, Biosphere and Ecosystems
PHIL3110 Environmental Ethics

LEVEL III (30 CREDITS)

PSYC3011 Capstone Research Project in Psychology (6 credits)

PSYC3017 Contemporary Personality Theories and Assessment

AND Eighteen (18) Credits from the following:

CHEM2725 Chemistry of the Environment
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ENSC2003 Sustainable Energy Systems
ENSC2900 Environmental Science Exchange
HIST2810 Global Environmental Issues: Past, Present and Future
CHEM3218 Environmental Chemistry and Toxicology
ENSC3000 Climate Variation and Change
ENSC3001 Natural Hazards and Disasters
ENSC3005 Urban Geomorphology
ENSC3020 Case Study in Environmental Science
ENSC3090 Professional Placement for Environmental Science

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

ENSC3103 Landscapes and Landforms of the Lesser
Antilles

ENSC3900 Research Project in Environmental
Science

HESC3003 Environmental Health

GOVT3025 International Environmental Politics

LAW3450 Caribbean Environmental Law **OR**

LAW3460 International Environmental Law

PHIL3110 Environmental Ethics

METE3505 Climate, Biosphere and Ecosystems

AND Three (3) Credits from:

PSYC3018 Forensic Psychology

PSYC3020 Educational Psychology

PSYC3028 Psychological Counselling Skills

PSYC3030 Clinical Psychology

PSYC3032 Psychology of Adulthood and Ageing

PSYC3065 Psychology of Addiction and Recovery

PSYC3066 Psychology of Human Spirituality: A

Transpersonal Approach

PSYC3067 Psychological First Aid: Trauma,

Survival and Resilience

PSYC3068 Health Psychology

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

**FOUN1101 Caribbean Civilization

**FOUN1301 Law, Economy, Governance and
Society

***Students must complete 30 Level II/III FST credits.**

****A student may substitute one of these with a Foreign
Language course.**

BSc ENVIRONMENTAL SCIENCE WITH PSYCHOLOGY

LEVEL I (24 CREDITS)

ENC1000 Earth and its Environment
OR METE1110 Introduction to Oceans and Climate
AND ENSC1005 Landform Dynamics
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World
AND Six (6) Level I Credits from FST Courses.
AND Three (3) Level I Credits from any Faculty.

ENSC3090 Professional Placement for Environmental Science
ENSC3103 Landscapes and Landforms of the Lesser Antilles
ENSC3900 Research Project in Environmental Science
CHEM3218 Environmental Chemistry and Toxicology
HESC3003 Environmental Health
GOVT3025 International Environmental Politics
LAW3450 Caribbean Environmental Law **OR** LAW3460 International Environmental Law
METE3505 Climate, Biosphere and Ecosystems
PHIL3110 Environmental Ethics

LEVEL II & III (60 CREDITS)*

LEVEL II (30 CREDITS)

ENSC2000 Essentials of Oceanography
ENSC2002 Earth's Climate
ENSC2005 Earth Life Cycles
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2022 Psychology of Conception to Adolescence
AND Nine (9) Credits:
CHEM2725 Chemistry of the Environment
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ENSC2003 Sustainable Energy Systems
ENSC2900 Environmental Science Exchange
HIST2810 Global Environmental Issues: Past, Present and Future
ENSC3000 Climate Variation and Change
ENSC3001 Natural Hazards and Disasters
ENSC3005 Urban Geomorphology
ENSC3020 Case Study in Environmental Science

LEVEL III (30 CREDITS)

PSYC3016 Minor Research Project Proposal in Psychology
AND Twelve (12) Credits from the following:
CHEM2725 Chemistry of the Environment
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ENSC2003 Sustainable Energy Systems
ENSC2900 Environmental Science Exchange
HIST2810 Global Environmental Issues: Past, Present and Future
CHEM3218 Environmental Chemistry and Toxicology
ENSC3000 Climate Variation and Change
ENSC3001 Natural Hazards and Disasters
ENSC3005 Urban Geomorphology
ENSC3020 Case Study in Environmental Science
ENSC3090 Professional Placement for Environmental Science
ENSC3103 Landscapes and Landforms of the Lesser Antilles

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

ENSC3900 Research Project in Environmental Science

HESC3003 Environmental Health

GOVT3025 International Environmental Politics

LAW3450 Caribbean Environmental Law **OR**

LAW3460 International Environmental Law

METE3505 Climate, Biosphere and Ecosystems

PHIL3110 Environmental Ethics

AND Fifteen (15) Level II/III Credits from any Faculty.

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

**FOUN1101 Caribbean Civilization

**FOUN1301 Law, Economy, Governance and Society

***Students must complete 30 Level II/III FST credits.**

****A student may substitute one of these with a Foreign Language course.**

BSc INFORMATION TECHNOLOGY AND PSYCHOLOGY

LEVEL I (24 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists

COMP1180 Mathematics for Computer Science I

COMP1205 Computing I

COMP1210 Computing II

COMP1215 Unix

PSYC1013 Introduction to Psychological Research and Report Writing

PSYC1025 Discovering Psychology: The Science of Humanity

PSYC1030 Exploring the Social Self in the Wider World

LEVEL II & III (60 CREDITS)

LEVEL II (33 CREDITS)

COMP2225 Software Engineering

COMP2232 Object-Oriented Programming Concepts

COMP2410 Computing in the Digital Age

COMP2415 Information Technology Engineering

COMP2611 Data Structures

PSYC2003 Foundations of Neuropsychology

PSYC2004 Personality Psychology

PSYC2008 Cognitive Psychology

PSYC2014 Quantitative Exploration of Psychological Experiences

PSYC2020 Psychopathology and Wellbeing

PSYC2022 Psychology of Conception to Adolescence

LEVEL III (27 CREDITS)

COMP3310 Database Management Systems I

COMP3415 Database Management Systems II

COMP3435 User Interface Design

PSYC3011 Capstone Research Project in Psychology (6 credits)

PSYC3017 Contemporary Personality Theories and Assessment

AND Six (6) Credits (including at least one Level III course) from COMP Level II/III Elective Courses.

AND Three (3) Credits from:

PSYC3018 Forensic Psychology

PSYC3020 Educational Psychology

PSYC3028 Psychological Counselling Skills

PSYC3030 Clinical Psychology

PSYC3032 Psychology of Adulthood and Ageing

PSYC3065 Psychology of Addiction and Recovery

PSYC3066 Psychology of Human Spirituality: A Transpersonal Approach

PSYC3067 Psychological First Aid: Trauma, Survival and Resilience

PSYC3068 Health Psychology

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc INFORMATION TECHNOLOGY WITH PSYCHOLOGY

LEVEL I (24 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 Unix
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World

LEVEL II & III (60 CREDITS)

LEVEL II (27 CREDITS)

COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2022 Psychology of Conception to Adolescence

LEVEL III (18 CREDITS)

COMP3310 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
PSYC3016 Minor Research Project Proposal in Psychology
AND Six (6) Credits (including at least one Level III course) from COMP Level II/III Elective Courses.

AND Fifteen (15) Level II/III Credits from any Faculty.

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc MATHEMATICS AND PSYCHOLOGY

LEVEL I (24 CREDITS)

MATH1141 Introductory Linear Algebra and Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1235 Python Programming and Mathematical Software
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World

LEVEL II & III (60 CREDITS)

LEVEL II (33 CREDITS)

MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2008 Cognitive Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2020 Psychopathology and Wellbeing
PSYC2022 Psychology of Conception to Adolescence

LEVEL III (27 CREDITS)

MATH3543 Abstract Algebra II
MATH3545 Linear Algebra II
MATH3550 Real Analysis II
PSYC3011 Capstone Research Project in Psychology
(6 credits)

PSYC3017 Contemporary Personality Theories and Assessment

AND

MATH3555 Complex Analysis

OR

MATH3560 Introduction to Metric Spaces and Topology

AND Three (3) Credits from Level II/III MATH Elective Courses.

AND Three (3) Credits from:

PSYC3018 Forensic Psychology

PSYC3020 Educational Psychology

PSYC3028 Psychological Counselling Skills

PSYC3030 Clinical Psychology

PSYC3032 Psychology of Adulthood and Ageing

PSYC3065 Psychology of Addiction and Recovery

PSYC3066 Psychology of Human Spirituality: A Transpersonal Approach

PSYC3067 Psychological First Aid: Trauma, Survival and Resilience

PSYC3068 Health Psychology

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Governance and Society

*A student may substitute one of these with a Foreign Language course.

BSc MATHEMATICS WITH PSYCHOLOGY

LEVEL I (24 CREDITS)

MATH1141 Introductory Linear Algebra and Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1235 Python Programming and Mathematical Software
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World

LEVEL II & III (60 CREDITS)

LEVEL II (27 CREDITS)

MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2022 Psychology of Conception to Adolescence

LEVEL III (18 CREDITS)

MATH3543 Abstract Algebra II
MATH3545 Linear Algebra II
MATH3550 Real Analysis II
PSYC3016 Minor Research Project Proposal in Psychology
AND
MATH3555 Complex Analysis
OR
MATH3560 Introduction to Metric Spaces and Topology
AND Three (3) Credits from Level II/III Mathematics Elective courses.
AND Fifteen (15) Level II/III Credits from any Faculty.

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Governance and Society
*A student may substitute one of these with a Foreign Language course.

BSc METEOROLOGY AND PSYCHOLOGY

LEVEL I (27 CREDITS)

METE1110 Introduction to Oceans and Climate
METE1125 Meteorological Observations, Instruments and Basic Analysis
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
METE1400 Mathematical Methods for Meteorology
MATH1190 Calculus A
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World

LEVEL II & III (60 CREDITS)

LEVEL II (33 CREDITS)

METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2125 Dynamic Meteorology
METE2210 Synoptic Meteorology
METE2215 Synoptic Meteorology Lab I
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2008 Cognitive Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2020 Psychopathology and Wellbeing
PSYC2022 Psychology of Conception to Adolescence

LEVEL III (27 CREDITS)

METE3110 Advanced Dynamic Meteorology
METE3210 Advanced Synoptic Meteorology
METE3215 Synoptic Meteorology Lab II

METE3310 The Tropics and Tropical Weather Systems

PSYC3011 Capstone Research Project in Psychology (6 credits)

PSYC3017 Contemporary Personality Theories and Assessment

AND At Least Three (3) Credits from:

METE2305 Fundamentals of Hydrometeorology

METE3420 Radar Meteorology

METE3425 Satellite Meteorology

METE3505 Climate, Biosphere and Ecosystems

METE3600 Numerical Weather Prediction and Computational Methods

AND Three (3) Credits from:

PSYC3018 Forensic Psychology

PSYC3020 Educational Psychology

PSYC3028 Psychological Counselling Skills

PSYC3030 Clinical Psychology

PSYC3032 Psychology of Adulthood and Ageing

PSYC3065 Psychology of Addiction and Recovery

PSYC3066 Psychology of Human Spirituality: A Transpersonal Approach

PSYC3067 Psychological First Aid: Trauma, Survival and Resilience

PSYC3068 Health Psychology

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc METEOROLOGY WITH PSYCHOLOGY

LEVEL I (27 CREDITS)

METE1110 Introduction to Oceans and Climate
METE1125 Meteorological Observations, Instruments and Basic Analysis
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
METE1400 Mathematical Methods for Meteorology
MATH1190 Calculus A
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World

LEVEL II & III (60 CREDITS)

LEVEL II (27 CREDITS)

METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2125 Dynamic Meteorology
METE2210 Synoptic Meteorology
METE2215 Synoptic Meteorology Lab I
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2022 Psychology of Conception to Adolescence

LEVEL III (18 CREDITS)

METE3110 Advanced Dynamic Meteorology
METE3210 Advanced Synoptic Meteorology
METE3215 Synoptic Meteorology Lab II
METE3310 The Tropics and Tropical Weather Systems
PSYC3016 Minor Research Project Proposal in Psychology

AND At Least Three (3) Credits from:

METE2305 Fundamentals of Hydrometeorology
METE3420 Radar Meteorology
METE3425 Satellite Meteorology
METE3505 Climate, Biosphere and Ecosystems
METE3600 Numerical Weather Prediction and Computational Methods

AND Fifteen (15) Level II/III Credits from any Faculty.

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc MICROBIOLOGY AND PSYCHOLOGY

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World

AND Three (3) Level I Credits from any Faculty.

LEVEL II & III (60 CREDITS)

LEVEL II (36 CREDITS)

BIOC2365 Primary Metabolism
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
MICR2260 Essential Microbiology
MICR2261 Eukaryotic Microbes
MICR2262 Methods in Microbiology
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2008 Cognitive Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2020 Psychopathology and Wellbeing
PSYC2022 Psychology of Conception to Adolescence

LEVEL III (24 CREDITS)

PSYC3011 Capstone Research Project in Psychology (6 credits)
PSYC3017 Contemporary Personality Theories and Assessment

AND Twelve (12) Credits from:

BIOL3025 Molecular Plant Pathology
MICR2900 Microbiology Exchange Elective
MICR3265 Microbiology of Food
MICR3266 Ecology of Microorganisms
MICR3267 Essential Virology
MICR3268 Microbial Pathogenesis
MICR3990 Microbiology Project (6 credits)
BIOL2166 Advanced Genetics
HESC3003 Environmental Health
BIOC3260 Principles of Biotechnology
BIOC2370 Cell Signals
PHIL3120 Biomedical Ethics

AND Three (3) Credits from:

PSYC3018 Forensic Psychology
PSYC3020 Educational Psychology
PSYC3028 Psychological Counselling Skills
PSYC3030 Clinical Psychology
PSYC3032 Psychology of Adulthood and Ageing
PSYC3065 Psychology of Addiction and Recovery
PSYC3066 Psychology of Human Spirituality: A Transpersonal Approach
PSYC3067 Psychological First Aid: Trauma, Survival and Resilience
PSYC3068 Health Psychology

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Governance and Society
*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc MICROBIOLOGY WITH PSYCHOLOGY

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World

AND Three (3) Level I Credits from any Faculty.

LEVEL II & III (60 CREDITS)

LEVEL II (30 CREDITS)

BIOC2365 Primary Metabolism
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
MICR2260 Essential Microbiology
MICR2261 Eukaryotic Microbes
MICR2262 Methods in Microbiology
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2022 Psychology of Conception to Adolescence

LEVEL III (15 CREDITS)

PSYC3016 Research Project in Psychology

AND Twelve (12) Credits from:

BIOL3025 Molecular Plant Pathology
MICR2900 Microbiology Exchange Elective
MICR3265 Microbiology of Food
MICR3266 Ecology of Microorganisms

MICR3267 Essential Virology

MICR3268 Microbial Pathogenesis

MICR3990 Microbiology Project (6 credits)

BIOL2166 Advanced Genetics

HESC3003 Environmental Health

BIOC3260 Principles of Biotechnology

BIOC2370 Cell Signals

PHIL3120 Biomedical Ethics

AND Fifteen (15) Level II/III Credits from any Faculty:

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Governance and Society

*A student may substitute one of these with a Foreign Language course.

BSc PHYSICS AND PSYCHOLOGY

LEVEL I (27 CREDITS)

PHYS1200 Physics I: Mechanics of Translation Motion
PHYS1205 Physics II: Rotation, Waves and Thermodynamics
PHYS1210 Physics III: Electric Fields, Currents and Circuits
PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics
MATH1190 Calculus A
MATH1195 Calculus B
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World

LEVEL II & III (60 CREDITS)

LEVEL II (33 CREDITS)

PHYS2400 Mathematical Methods In Physics I
PHYS2405 Mathematical Methods In Physics II
PHYS2410 Modern Physics
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2008 Cognitive Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2020 Psychopathology and Wellbeing
PSYC2022 Psychology of Conception to Adolescence

LEVEL III (27 CREDITS)

PHYS3420 Electromagnetic Theory I
PHYS3480 Theory of Quantum Mechanics
PHYS3485 Theory of Statistical Mechanics
PSYC3011 Capstone Research Project in Psychology (6 credits)

PSYC3017 Contemporary Personality Theories and Assessment

AND Six (6) Credits from Level II/III ELET/PHYS Elective Courses.

AND Three (3) Credits from:

PSYC3018 Forensic Psychology
PSYC3020 Educational Psychology
PSYC3028 Psychological Counselling Skills
PSYC3030 Clinical Psychology
PSYC3032 Psychology of Adulthood and Ageing
PSYC3065 Psychology of Addiction and Recovery
PSYC3066 Psychology of Human Spirituality: A Transpersonal Approach
PSYC3067 Psychological First Aid: Trauma, Survival and Resilience
PSYC3068 Health Psychology

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Governance and Society

*A student may substitute one of these with a Foreign Language course.

BSc PHYSICS WITH PSYCHOLOGY

LEVEL I (27 CREDITS)

PHYS1200 Physics I: Mechanics of Translation Motion
PHYS1205 Physics II: Rotation, Waves and Thermodynamics
PHYS1210 Physics III: Electric Fields, Currents and Circuits
PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics
MATH1190 Calculus A
MATH1195 Calculus B
PSYC1013 Introduction to Psychological Research and Report Writing
PSYC1025 Discovering Psychology: The Science of Humanity
PSYC1030 Exploring the Social Self in the Wider World

LEVEL II & III (60 CREDITS)

LEVEL II (27 CREDITS)

PHYS2400 Mathematical Methods In Physics I
PHYS2405 Mathematical Methods In Physics II
PHYS2410 Modern Physics
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I
PSYC2003 Foundations of Neuropsychology
PSYC2004 Personality Psychology
PSYC2014 Quantitative Exploration of Psychological Experiences
PSYC2022 Psychology of Conception to Adolescence

LEVEL III (18 CREDITS)

PHYS3420 Electromagnetic Theory I
PHYS3480 Theory of Quantum Mechanics
PHYS3485 Theory of Statistical Mechanics
PSYC3016 Minor Research Project Proposal in Psychology
AND Six (6) Credits from Level II/III ELET/PHYS Elective Courses.

AND Fifteen (15) Level II/III Credits from any Faculty.

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Governance and Society
*A student may substitute one of these with a Foreign Language course.

BSc BIOCHEMISTRY WITH EDUCATION

LEVEL I (27 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
EDPS1001 Introduction to Human Development

LEVELS II & III (60 CREDITS)

LEVEL II (27 CREDITS)

BIOC2365 Primary Metabolism
BIOC2366 Protein Biochemistry
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education

AND One (1) of the following:

BIOL2166 Advanced Genetics I
BIOC2370 Cell Signals

AND One (1) of the following:

EDMA2111 The Structure and Nature of Mathematics

EDSC2110 The Structure and Nature of Science

AND One (1) of the following:

EDPH2016 Philosophy of Education
EDME2211 Testing, Measurement & Evaluation I
EDEA2304 Introduction to Educational Administration
EDSE2924 Introduction to Special Education
EDTK3304 Media & Technology in Education
EDTE3404 Issues in Teacher Education

LEVEL III (33 CREDITS)

BIOC3265 Principles of Bioinformatics
EDSO3102 The Social Context of Education
AND Twelve (12) Credits from:
BIOL2900 Biochemistry Exchange Elective
BIOC3260 Principles of Biotechnology
BIOC3261 Mitochondrial Bioenergetics
BIOC3370 Basis of Human Disease
BIOC3050 Biochemistry of a Changing Planet
BIOC3990 Biochemistry Project (6 credits)
BIOL3025 Molecular Plant Pathology
CHEM3635 Biological Inorganic Chemistry

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc BIOLOGY WITH EDUCATION

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
EDPS1001 Introduction to Human Development
AND Nine (9) Level I Credits from any Faculty.

LEVELS II & III (60 CREDITS)

LEVEL II (33 CREDITS)

BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education
AND Six (6) Credits from:

BIOC2365 Primary Metabolism
ECOL2460 Essentials of Ecology
MICR2260 Essentials Microbiology

AND Six (6) Credits from:

BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals

AND One (1) of the following:

EDMA2111 The Structure and Nature of Mathematics
EDSC2110 The Structure and Nature of Science

AND Six (6) Credits from Levels II/III Biological Sciences Elective Courses:

Level II BIOC/BIOL/ECOL/MICR courses
Level III BIOC/BIOL/ECOL/MICR courses

LEVEL III (27 CREDITS)

EDSO3102 The Social Context of Education
AND Six (6) Credits from Level III Biological Sciences Elective Courses:
Level III BIOC/BIOL/ECOL/MICR courses
AND One (1) of the following:
EDPH2016 Philosophy of Education
EDME2211 Testing, Measurement & Evaluation I
EDEA2304 Introduction to Educational Administration
EDSE2924 Introduction to Special Education
EDTK3304 Media & Technology in Education
EDTE3404 Issues in Teacher Education

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing
AND

*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc CHEMISTRY WITH EDUCATION

LEVEL I (24 CREDITS)

CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
EDPS1001 Introduction to Human Development
AND Nine (9) Level I Credits from any Faculty.

LEVELS II & III (60 CREDITS)

LEVEL II (27 CREDITS)

CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis
EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education

AND One (1) of the following:

EDMA2111 The Structure and Nature of Mathematics
EDSC2110 The Structure and Nature of Science

LEVEL III (33 Credits)

CHEM3625 Laboratory Methods in Chemistry III
EDSO3102 The Social Context of Education

AND Six (6) Credits from:

CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND Three (3) Credits from:

CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and Toxicology**

AND Three (3) Credits from:

EDPH2016 Philosophy of Education
EDME2211 Testing, Measurement & Evaluation I
EDEA2304 Introduction to Educational Administration
EDSE2924 Introduction to Special Education
EDTK3304 Media & Technology in Education
EDTE3404 Issues in Teacher Education

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc COMPUTER SCIENCE WITH EDUCATION

LEVEL I (24 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists

COMP1180 Mathematics for Computer Science I

COMP1205 Computing I

COMP1210 Computing II

COMP1215 UNIX

EDPS1001 Introduction to Human Development

AND Six (6) Level I Credits from any Faculty.

LEVELS II & III (60 CREDITS)

LEVEL II (24 CREDITS)

COMP2210 Mathematics for Computer Science II

COMP2220 Computer System Architecture

COMP2225 Software Engineering

COMP2232 Object-Oriented Programming Concepts

COMP2611 Data Structures

EDCU2101 Introduction to Curriculum, Theory, Planning & Practice

EDRS2201 Introduction to Research Methods in Education

AND One (1) of the following:

EDMA2111 The Structure and Nature of Mathematics

EDSC2110 The Structure and Nature of Science

LEVEL III (36 CREDITS)

COMP3310 Algorithms

COMP3320 Design Principles of Operating Systems

COMP3330 Database Management Systems I

EDSO3102 The Social Context of Education

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses

AND One (1) of the following:

EDPH2016 Philosophy of Education

EDME2211 Testing, Measurement & Evaluation I

EDEA2304 Introduction to Educational Administration

EDSE2924 Introduction to Special Education

EDTK3304 Media & Technology in Education

EDTE3404 Issues in Teacher Education

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ECOLOGY WITH EDUCATION

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
EDPS1001 Introduction to Human Development
AND Nine (9) Level I Credits from any Faculty.

LEVELS II & III (60 CREDITS)

LEVEL II (33 CREDITS)

BIOL2373 Skills for Biologists
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ECOL2462 Marine Biota
EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education
AND One (1) of the following:

EDMA2111 The Structure and Nature of Mathematics
EDSC2110 The Structure and Nature of Science

LEVEL III (27 CREDITS)

ECOL3100 Statistics for Ecologists
ECOL3461 Ecology of a Changing Planet
EDSO3102 The Social Context of Education
AND Twelve (12) Credits from:
BIOC2371 Molecular Techniques
BIOL2372 Plants for Caribbean Landscapes
ECOL3454 Fisheries Biology
ECOL3460 Biology & Ecology of Coral Reefs
ECOL3463 Tropical Crop Ecology
ECOL3462 Behaviour: An Evolutionary Approach
ECOL3990 Ecology Project (6 credits)
ENSC2000 Essentials of Oceanography

MICR3266 Ecology of Microorganisms

AND One (1) of the following:

EDPH2016 Philosophy of Education
EDME2211 Testing, Measurement & Evaluation I
EDEA2304 Introduction to Educational Administration
EDSE2924 Introduction to Special Education
EDTK3304 Media & Technology in Education
EDTE3404 Issues in Teacher Education

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ELECTRONICS WITH EDUCATION

LEVEL I (24 CREDITS)

ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
COMP1205 Computing I
MATH1190 Calculus A
EDPS1001 Introduction to Human Development
AND Three (3) Level I Credits from any Faculty.

LEVELS II & III (60 CREDITS)

LEVEL II (24 CREDITS)

EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education

AND One (1) of the following:

EDMA2111 The Structure and Nature of Mathematics

EDSC2110 The Structure and Nature of Science

AND At Least Twelve (12) Credits from:**

ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication System I
ELET2235 Automation Technology & Applications
ELET2240 Sensor & Actuation Devices
PHYS2400 Mathematical Methods in Physics I

AND One (1) of the following:

EDPH2016 Philosophy of Education
EDME2211 Testing, Measurement & Evaluation I
EDEA2304 Introduction to Educational Administration
EDSE2924 Introduction to Special Education
EDTK3304 Media & Technology in Education
EDTE3404 Issues in Teacher Education

LEVEL III (36 CREDITS)

EDSO3102 The Social Context of Education
AND At Most Eighteen (18) credits from:**
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems I
ELET3240 Digital Communication Systems II
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project (6 credits)
ELET3298 Group Electronics Research Project (6 credits)
ELET3955 Electronics Internship

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.
**Students must complete a minimum total of 30 credits from Electronics courses.

BSc ENVIRONMENTAL SCIENCE WITH EDUCATION

LEVEL I (24 CREDITS)

ENC1000 Earth and its Environment
OR METE1110 Introduction to Oceans and Climate
AND ENSC1005 Landform Dynamics
AND Six (6) Level I Credits from FST Courses.
EDPS1001 Introduction to Human Development
AND Nine (9) Level I Credits from any Faculty.

LEVEL II & III (60 CREDITS)*

LEVEL II (30 CREDITS)

ENSC2000 Essentials of Oceanography
ENSC2002 Earth's Climate
ENSC2005 Earth Life Cycles
EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education

AND One (1) of the following:

EDMA2111 The Structure and Nature of Mathematics
EDSC2110 The Structure and Nature of Science
AND Twelve (12) Credits:
CHEM2725 Chemistry of the Environment
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ENSC2003 Sustainable Energy Systems
ENSC2900 Environmental Science Exchange
HIST2810 Global Environmental Issues: Past, Present and Future
ENSC3000 Climate Variation and Change
ENSC3001 Natural Hazards and Disasters
ENSC3005 Urban Geomorphology
ENSC3020 Case Study in Environmental Science
ENSC3090 Professional Placement for Environmental Science
ENSC3103 Landscapes and Landforms of the Lesser Antilles

ENSC3900 Research Project in Environmental Science
CHEM3218 Environmental Chemistry and Toxicology
HESC3003 Environmental Health
GOVT3025 International Environmental Politics
LAW3450 Caribbean Environmental Law **OR**
LAW3460 International Environmental Law
METE3505 Climate, Biosphere and Ecosystems
PHIL3110 Environmental Ethics

LEVEL III (30 CREDITS)

EDSO3102 The Social Context of Education
AND Nine (9) Credits from the following:
CHEM2725 Chemistry of the Environment
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ENSC2003 Sustainable Energy Systems
ENSC2900 Environmental Science Exchange
HIST2810 Global Environmental Issues: Past, Present and Future
CHEM3218 Environmental Chemistry and Toxicology
ENSC3000 Climate Variation and Change
ENSC3001 Natural Hazards and Disasters
ENSC3005 Urban Geomorphology
ENSC3020 Case Study in Environmental Science
ENSC3090 Professional Placement for Environmental Science
ENSC3103 Landscapes and Landforms of the Lesser Antilles
ENSC3900 Research Project in Environmental Science
HESC3003 Environmental Health
GOVT3025 International Environmental Politics
LAW3450 Caribbean Environmental Law **OR**
LAW3460 International Environmental Law

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

METE3505 Climate, Biosphere and Ecosystems

PHIL3110 Environmental Ethics

AND One (1) of the following:

EDPH2016 Philosophy of Education

EDME2211 Testing, Measurement & Evaluation I

EDEA2304 Introduction to Educational

Administration

EDSE2924 Introduction to Special Education

EDTK3304 Media & Technology in Education

EDTE3404 Issues in Teacher Education

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

**FOUN1101 Caribbean Civilization

**FOUN1301 Law, Economy, Governance and Society

***Students must complete 30 Level II/III FST credits.**

**A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc INFORMATION TECHNOLOGY WITH EDUCATION

LEVEL I (24 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
EDPS1001 Introduction to Human Development
AND Six (6) Level I Credits from any Faculty.

LEVELS II & III (60 CREDITS)

LEVEL II (27 CREDITS)

COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education

AND One (1) of the following:

EDMA2111 The Structure and Nature of Mathematics

EDSC2110 The Structure and Nature of Science

AND One (1) of the following:

EDPH2016 Philosophy of Education

EDME2211 Testing, Measurement & Evaluation I

EDEA2304 Introduction to Educational Administration

EDSE2924 Introduction to Special Education

EDTK3304 Media & Technology in Education

EDTE3404 Issues in Teacher Education

LEVEL III (33 CREDITS)

COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
EDSO3102 The Social Context of Education
AND at least Six (6) Credits (including at least one Level III course) from Information Technology Elective Courses

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing
AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc MATHEMATICS WITH EDUCATION

LEVEL I (24 CREDITS)

MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1235 Python Programming & Mathematical Software
EDPS1001 Introduction to Human Development
AND Six (6) Level I Credits from any Faculty.

LEVELS II & III (60 CREDITS)

LEVEL II (27 CREDITS)

MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education

AND One (1) of the following:

EDMA2111 The Structure and Nature of Mathematics
EDSC2110 The Structure and Nature of Science
AND One (1) of the following:
EDPH2016 Philosophy of Education
EDME2211 Testing, Measurement & Evaluation I
EDEA2304 Introduction to Educational Administration
EDSE2924 Introduction to Special Education
EDTK3304 Media & Technology in Education
EDTE3404 Issues in Teacher Education

LEVEL III (33 CREDITS)

MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2
EDSO3102 The Social Context of Education
AND
MATH3555 Complex Analysis
OR
MATH3560 Metric Spaces
AND Three (3) Credits from Level II/III MATH Elective Courses

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc METEOROLOGY WITH EDUCATION

LEVEL I (24 CREDITS)

METE1110 Introduction to Oceans and Climate
METE1125 Meteorological Observations, Instruments & Basic Analysis
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
METE1400 Mathematical Methods for Meteorology
MATH1190 Calculus A
EDPS1001 Introduction to Human Development
AND Three (3) Level I Credits from any Faculty.

LEVELS II & III (60 CREDITS)

LEVEL II (27 CREDITS)

METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2125 Dynamic Meteorology
METE2210 Synoptic Meteorology
METE2215 Synoptic Meteorology Lab I
EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education

AND Three (3) Level I Credits from the following:

EDMA2111 The Structure and Nature of Mathematics
EDSC2110 The Structure and Nature of Science
AND Three (3) Level I Credits from the following:
EDPH2016 Philosophy of Education
EDME2211 Testing, Measurement & Evaluation I
EDEA2304 Introduction to Educational Administration
EDSE2924 Introduction to Special Education
EDTK3304 Media & Technology in Education
EDTE3404 Issues in Teacher Education

LEVEL III (33 CREDITS)

METE3110 Advanced Dynamic Meteorology
METE3210 Advanced Synoptic Meteorology
METE3215 Synoptic Meteorology Lab II
METE3310 The Tropics and Tropical Weather Systems
EDSO3102 The Social Context of Education
AND at Least Three (3) Credits from:
METE2305 Fundamentals of Hydrometeorology
METE3420 Radar Meteorology
METE3425 Satellite Meteorology
METE3505 Climate, Biosphere and Ecosystems
METE3600 Numerical Weather Prediction and Computational Methods

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc MICROBIOLOGY WITH EDUCATION

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
EDPS1001 Introduction to Human Development
AND NINE (9) Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

BIOC2365 Primary Metabolism
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
MICR2260 Essential Microbiology
MICR2261 Eukaryotic Microbes
MICR2262 Methods in Microbiology
EDCU2101 Introduction to Curriculum, Theory, Planning & Practice
EDRS2201 Introduction to Research Methods in Education
AND One (1) of the following:

EDMA2111 The Structure and Nature of Mathematics

EDSC2110 The Structure and Nature of Science

AND One (1) of the following:

EDPH2016 Philosophy of Education
EDME2211 Testing, Measurement & Evaluation I
EDEA2304 Introduction to Educational Administration
EDSE2924 Introduction to Special Education
EDTK3304 Media & Technology in Education
EDTE3404 Issues in Teacher Education

LEVEL III (30 CREDITS)

EDSO3102 The Social Context of Education
AND Twelve (12) Credits from:
BIOC2370 Cell Signals*
BIOL2166 Advanced Genetics*
MICR2900 Microbiology Exchange Elective**
BIOC3260 Principles of Biotechnology*
BIOL3025 Molecular Plant Pathology
MICR3265 Microbiology of Food
MICR3266 Ecology of Microorganisms
MICR3267 Essential Virology
MICR3268 Microbial Pathogenesis
MICR3990 Microbiology Project (6 Credits)
HESC3003 Environmental Health*
PHIL3120 Biomedical Ethics*

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing
AND

***FOUN1101 Caribbean Civilization

***FOUN1301 Law, Economy, Governance and Society

*No more than two (2) of these can be used for the Microbiology Major.

**Substitute Exchange Course.

***A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc PHYSICS WITH EDUCATION

LEVEL I (24 CREDITS)

PHYS1200 Physics I: Mechanics of Translational Motion

PHYS1205 Physics II: Rotation, Waves and Thermodynamics

PHYS1210 Physics III: Electric Fields, Currents and Circuits

PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics

MATH1190 Calculus A

MATH1195 Calculus B

EDPS1001 Introduction to Human Development

AND Three (3) Level I Credits from any Faculty.

LEVELS II & III (60 CREDITS)

LEVEL II (27 CREDITS)

PHYS2400 Mathematical Methods in Physics I

PHYS2405 Mathematical Methods in Physics II

PHYS2410 Modern Physics

PHYS2415 Theory of Classical Mechanics

PHYS2420 Advanced Physics Laboratory I

EDCU2101 Introduction to Curriculum, Theory, Planning & Practice

EDRS2201 Introduction to Research Methods in Education

AND One (1) of the following:

EDMA2111 The Structure and Nature of Mathematics

EDSC2110 The Structure and Nature of Science

AND One (1) of the following:

EDPH2016 Philosophy of Education

EDME2211 Testing, Measurement & Evaluation I

EDEA2304 Introduction to Educational Administration

EDSE2924 Introduction to Special Education

EDTK3304 Media & Technology in Education

EDTE3404 Issues in Teacher Education

LEVEL III (33 CREDITS)

PHYS3420 Electromagnetic Theory I

PHYS3480 Theory of Quantum Mechanics

PHYS3485 Theory of Statistical Mechanics

EDSO3102 The Social Context of Education

AND at least Six (6) Credits (two courses) from Physics Elective Courses

AND Fifteen (15) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

COURSES BY SEMESTER

FACULTY OF SCIENCE AND TECHNOLOGY

SEMESTER I

FSAT2004 Foundations of Emergency Preparedness: First Aid, Fire Safety and Response Training

SEMESTER II

FSAT2002 Science Meets Business – An Introduction to the Enterprise of Innovation

SUMMER

FSAT2000 Science Teaching for the Caribbean

SUSTAINABLE ENERGY MANAGEMENT

The Faculty of Science and Technology in conjunction with the Faculty of Social Sciences, offers a Minor in Sustainable Energy Management.

MINOR IN SUSTAINABLE ENERGY MANAGEMENT: [Course descriptions](#)

LEVEL I (12 CREDITS)

MGMT1001 Introduction to Management
ACCT1002 Introduction to Financial Accounting

AND Three (3) Credits from:

ENSC1000 Earth and its Environment
METE1110 Introduction to Oceans and Climate
METE1305 Introduction to Climate Change and Society

AND Three (3) Credits from:

ECON1005 Introductory Statistics
MATH1230 Introductory Applied Statistics I
SOCI1005 Introductory Statistics for the Behaviour Sciences

LEVEL II & III (15 CREDITS)

ENSC2003 Sustainable Energy Systems
MGMT2224 Introduction to Entrepreneurship

AND Three (3) Credits from:

MGMT2026 Production & Operations Management
MGMT3031 Business Strategy and Policy
MGMT3056 Project Management

AND Three (3) Credits from:

BIOL2054 Bioenergy and Biofuels
BIOL2466 Tropical Energy and Bioprocessing
PHYS3460 Physics of Sustainable Energy Systems

AND One (1) course from:

ENSC3020 Case Study in Environmental Sciences
ENSC3090 Professional Placement for Environmental Science
PHYS3490 Physics One-Semester Research Project
BIOL3901 Multidisciplinary Project
PHYS3955 Physics Internship

FACULTY OF SCIENCE AND TECHNOLOGY COURSES

LEVEL II FACULTY OF SCIENCE AND TECHNOLOGY COURSES

FSAT2000 SCIENCE TEACHING FOR THE CARIBBEAN (3 Credits)

Pre-requisite: Twelve (12) Level 1 FST credits

Anti-requisite: CHEM2513 Fundamentals of Teaching Chemistry

Syllabus: This course intends to develop the skills needed for teaching science whether as discrete disciplines or integrated science. It emphasizes how learning occurs and how to overcome some of the barriers to learning, while fostering critical thinking, analytical and communication skills. Moreover, the course explores best practice relating to scientific literacy, an inquiry-based approach to Science as well as various culturally relevant teaching strategies to engage active and hence deep learning. Lesson planning and microteaching feature prominently in this course.

Teaching: This course will be delivered in an online format over 36 contact hours.

Method of Examination:

The course will be assessed by 100% coursework as follows:

Online Reflective Journal	20%
Online Quiz/Discussion Forum	15%
Critical Skills Assessment	10%
Microteaching	20%
e-Portfolio	35%

FSAT2002 SCIENCE MEETS BUSINESS: AN INTRODUCTION TO THE ENTERPRISE OF INNOVATION (3 Credits)

Pre-requisite: Twelve (12) Level 1 FST credits

Anti-requisite: COCR2070 Student Entrepreneurial Empowerment Development (SEED)

Syllabus: This course develops a foundational understanding of how scientific innovations transition from the laboratory to the marketplace. Through a mix of interactive lectures, hands-on workshops, and guest presentations from industry professionals, it explores key topics such as commercialization, intellectual property, regulatory frameworks, and event management. The course facilitates practical experience with developing a business plan, delivering a sales pitch, reflecting on event organization, and analysing intellectual property considerations.

Teaching: Two hours of interactive lectures and a two-hour laboratory session each week

Method of Examination:

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

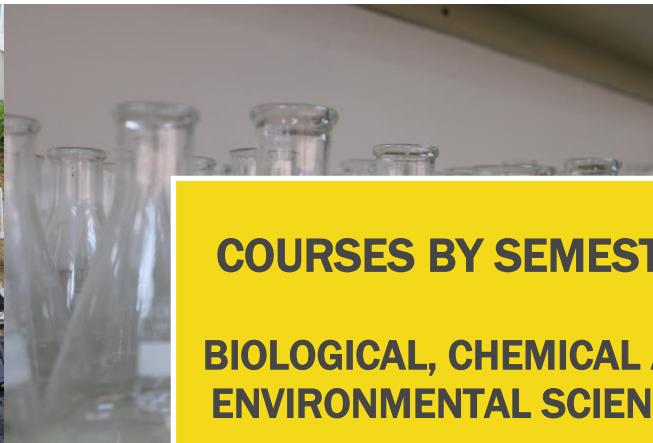
The course will be assessed by 100% coursework as follows:

Business Plan	20%
Sales Pitch	20%
Intellectual Property Report	20%
Event Planning and Implementation	20%
Event Management Reflection Portfolio	20%

FSAT2004 FOUNDATIONS OF EMERGENCY PREPAREDNESS: FIRST AID, FIRE SAFETY AND RESPONSE

TRAINING (3 Credits)

Pre-requisite: 18 Level I credits


Syllabus: This introductory course develops the essential knowledge and practical skills needed to effectively respond to emergencies and hazards commonly encountered in household, laboratory, field, and research settings as well as natural disasters of relevance to the Caribbean region. Through a combination of interactive lectures, demonstrations, and hands-on activities, it teaches basic first aid techniques, fire safety principles including proper handling of flammable materials, fire extinguisher use for different types of fires, and general emergency response strategies, including incident reporting, spill management, and the use of personal protective equipment (PPE). Furthermore, the course addresses responses to natural disasters common to the Caribbean (hurricanes, earthquakes, floods), covering disaster preparedness planning (evacuation plans) and basic disaster response skills (community relief assistance). The course will be assessed using participation, tests/quizzes, practical skills demonstrations and reports. A First Aid Certificate will be awarded for full attendance and successful completion of the First Aid training sessions including all practical and theoretical assessments. **Participants have the opportunity to gain a First Aid certificate and a Fire Safety Certificate.**

Teaching: Twenty-four hours of lectures and twelve hours of practicals.

Method of Examination:

The course will be assessed by 100% coursework as follows:

Tests/quizzes	35%
Reports: Journals, case studies and/or project reports	25%
Practicals/Competency-Based Activities	40%

COURSES BY SEMESTER

BIOLOGICAL, CHEMICAL AND ENVIRONMENTAL SCIENCES

SEMESTER I

PRELIMINARY

BIOL0051 Biology I

CHEM0615 Prelim Chemistry I

LEVEL I

BIOL1020 Diversity of Life I

BIOL1025 Diversity of Life II

CHEM1110 Introduction to Organic Chemistry

CHEM1125 Introduction to Experimental Chemistry

ENSC1000 Earth and its Environment

METE1110 Introduction to Ocean and Climate

LEVEL II

BIOC2365 Primary Metabolism

BIOL2054 Bioenergy and Biofuels

BIOL2166 Advanced Genetics I

BIOL2370 Flowering Plant Physiology

BIOL2373 Skills for Biologists

CHEM2513 Fundamentals of Teaching Chemistry

CHEM2700 Intermediate Inorganic Chemistry

CHEM2705 Intermediate Organic Chemistry

CHEM2715 Laboratory Methods in Chemistry I

ECOL2460 Essentials of Ecology

ECOL2461 Caribbean Island Biodiversity

ENSC2000 Essentials of Oceanography

ENSC2005 Earth Life Cycles

FDSC2000 Fundamentals of Food Processing

FDSC2001 Principles of Food Science

MICR2260 Essential Microbiology

LEVEL III

BIOC 3260 Principles of Biotechnology

BIOC 3265 Principles of Bioinformatics

BIOC 3290 Biochemistry Project for Minors

BIOC 3370 Basis of Human Disease

CHEM3167 Advanced Inorganic Chemistry

CHEM3218 Environmental Chemistry & Toxicology

CHEM3620 Advanced Physical Chemistry

CHEM3625 Laboratory Methods in Chemistry III

CHEM3630 Methods in Instrumental Analysis

CHEM3950 Basic Project in Chemistry

CHEM3992 Special Topics in Physical Chemistry

ECOL3460 Biology & Ecology of Coral Reefs

ECOL3461 Ecology of a Changing Planet

ECOL3463 Tropical Crop Ecology

ENSC3000 Climate Variation and Change

ENSC3005 Urban Geomorphology

ENSC3020 Case Study in Environmental Science

ENSC3100 Principles of Sustainability*

ENSC3101 Climate and Weather in the Caribbean*

ENSC3102 Biodiversity in the Caribbean*

ENSC3901 Research Project in Barbados*

FDSC3300 Project for Food Science Minors

MICR3266 Ecology of Microorganisms

MICR3268 Microbial Pathogenesis

*Courses in Minor in Sustainability in the Caribbean

SEMESTER II

PRELIMINARY

BIOL0052 Biology II
CHEM0625 Prelim Chemistry II

LEVEL I

BIOL1030 Introduction to Genetics
BIOC1015 Introduction to Biochemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
ENSC1005 Landform Dynamics

LEVEL II

BIOC2366 Protein Biochemistry
BIOC2370 Cell Signals
BIOC2371 Molecular Techniques
BIOL2371 Ecophysiology of Animals
BIOL2372 Plants for Caribbean Landscapes
BIOL2373 Skills for Biologists
CHEM2406 Food Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2720 Laboratory Methods in Chemistry II
CHEM2725 Chemistry of the Environment
CHEM2730 Quantitative Chemical Analysis
ECOL2462 Marine Biota
ENSC2002 Earth's Climate
ENSC2003 Sustainable Energy Systems
FDSC2300 Food Fermentation
MICR2261 Eukaryotic Microbes
MICR2262 Methods in Microbiology

LEVEL III

BIOL3025 Molecular Plant Pathology
BIOC3261 Mitochondrial Bioenergetics
BIOC3290 Biochemistry Project for Minors
CHEM3175 Advanced Organic Chemistry
CHEM3625 Laboratory Methods in Chemistry III
CHEM3635 Biological Inorganic Chemistry
CHEM3800 Nanostructures and Supramolecular Chemistry
CHEM3950 Basic Project in Chemistry
ECOL3100 Statistics for Ecologists
ECOL3454 Fisheries Biology
ENSC3001 Natural Hazards and Disasters
ENSC3020 Case Study in Environmental Science
FDSC3300 Project for Food Science Minors
MICR3265 Microbiology of Food
MICR3267 Essential Virology

YEAR-LONG COURSES

CHEM1125 Introduction to Experimental Chemistry
CHEM3955 Research Project in Chemistry
BIOC3990 Biochemistry Project
BIOL3990 Biology Project
ECOL3990 Ecology Project
MICR3990 Microbiology Project
ENSC3900 Research Project in Environmental Science

SUMMER COURSES

BIOC2340 Biochemistry of Tastes and Flavours
BIOL2465 Tropical Horticulture
BIOL2463 Sustainable Land Use
BIOL2466 Tropical Energy and Bioprocessing
BIOL3501 Professional Placement for Biologists
BIOL3901 Multidisciplinary Project
CHEM3990 Professional Placement for Chemists
ENSC3020 Case Study in Environmental Science
ENSC3090 Professional Placement for Environmental Scientists
ENSC3103 Landscapes and Landforms of the Lesser Antilles
FDSC3300 Project for Food Science Minors

BIOLOGICAL SCIENCES

The Department of Biological & Chemical Sciences offers Single Majors in Biochemistry, Biology, Ecology, Environmental Science and Microbiology as well as Double Majors in Biological Sciences and Chemistry. Biology, Biochemistry, Ecology and Microbiology Majors may not be combined; students wishing to pursue such Double Majors must instead register for the Biological Sciences Double Major. Only the Biology, Biochemistry or Environmental Science Major may be combined with the Chemistry Major. Only the Biology, Chemistry, Ecology or Meteorology Major may be combined with the Environmental Science Major or Minor. Students wishing to combine a Biology, Biochemistry, or Ecology Major with a Major of another discipline must seek the approval of the Dean and are advised that timetable clashes of courses may make it improbable to complete such degrees in the minimum 3-year period.

**It is a requirement in the Biological Sciences that students must pass both
Theory and Practical components of courses where applicable.**

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

MAJOR IN BIOCHEMISTRY: [Course Descriptions](#)

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry

LEVELS II & III (30 CREDITS)

LEVEL II (15 CREDITS)

BIOL2373 Skills for Biologists¹
BIOC2371 Molecular Techniques
BIOC2365 Primary Metabolism
BIOC2366 Protein Biochemistry

AND Three (3) Credits from the following:

BIOL2166 Advanced Genetics I
BIOC2370 Cell Signals

LEVEL III (15 CREDITS)

BIOC3265 Principles of Bioinformatics

AND 12 Credits from among the following:

Current Level II BIOC, Level III BIOC and CHEM elective courses:

BIOC2900 Biochemistry Exchange Elective
BIOC3370 Basis of Human Disease
BIOC3260 Principles of Biotechnology
BIOC3261 Mitochondrial Bioenergetics
BIOC3050 Biochemistry of a Changing Planet
BIOC3990 Biochemistry Project (6 Credits)
BIOL3025 Molecular Plant Pathology
CHEM3635 Biological Inorganic Chemistry

¹This course is offered in both semesters but it is recommended that Biochemistry Majors take this course in Semester 1.

MINOR IN BIOCHEMISTRY: [Course Descriptions](#)

LEVEL I (18 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1030 Introduction to Genetics
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry

LEVELS II & III (15 CREDITS)

BIOC2366 Protein Biochemistry

AND TWELVE (12) Credits from:

BIOC2365 Primary Metabolism
BIOC2340 Biochemistry of Tastes and Flavours
BIOC2370 Cell Signals
BIOC2900 Biochemistry Exchange Elective
BIOC3050 Biochemistry of a Changing Planet
BIOC3370 Basis of Human Disease
BIOC3260 Principles of Biotechnology
BIOC3261 Mitochondrial Bioenergetics
BIOC3265 Principles of Bioinformatics
BIOC3290 Biochemistry Project for Minors (3 credits)
BIOL3025 Molecular Plant Pathology
CHEM3635 Biological Inorganic Chemistry

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

MAJOR IN BIOLOGY: [Course Descriptions](#)

LEVEL I (12 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics

BIOL2466 Tropical Energy and Bioprocessing

BIOL2900 Biology Exchange Elective

ECOL2460 Essentials of Ecology

ECOL2461 Caribbean Island Biodiversity

ECOL2462 Marine Biota

ECOL2900 Ecology Exchange Elective

MICR2260 Essential Microbiology

MICR2261 Eukaryotic Microbes

MICR2262 Methods in Microbiology

MICR2900 Microbiology Exchange Elective

LEVELS II & III (30 CREDITS)

BOTH courses (6 Credits):

BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists¹

LEVEL III Courses:

BIOC3050 Biochemistry of a Changing Planet

BIOC3260 Principles of Biotechnology

BIOC3261 Mitochondrial Bioenergetics

BIOC3370 Basis of Human Disease

BIOL3501 Professional Placement for Biologists

BIOL3901 Multidisciplinary Project

BIOL3990 Biology Project (6 credits)

BIOC3265 Principles of Bioinformatics

BIOL3025 Molecular Plant Pathology

ECOL3100 Statistics for Ecologists

ECOL3454 Fisheries Biology

ECOL3460 Biology & Ecology of Coral Reefs³

ECOL3461 Ecology of a Changing Planet

ECOL3463 Tropical Crop Ecology

MICR3265 Microbiology of Food

MICR3266 Ecology of Microorganisms

MICR3267 Essential Virology

MICR3268 Microbial Pathogenesis

¹This course is offered in both semesters but it is recommended that Biology Majors take this course in Semester 2.

²Students pursuing the Biology & Chemistry Double Major should not choose this course as Ecology and Chemistry courses clash at Level III.

³Students wishing to pursue this course must be able to swim.

Two courses (6 Credits) from:

BIOC2365 Primary Metabolism
ECOL2460 Essentials of Ecology²
MICR2260 Essential Microbiology

Two courses (6 Credits) from:

BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals

Six (6) credits from:

Level II BIOC/BIOL/ECOL/MICR courses
Level III BIOC/BIOL/ECOL/MICR courses

Six (6) credits from:

Level III BIOC/BIOL/ECOL/MICR courses
BIOLOGICAL SCIENCES ELECTIVE COURSES

LEVEL II Courses:

BIOC2365 Primary Metabolism
BIOC2366 Protein Biochemistry
BIOC2340 Biochemistry of Tastes and Flavours
BIOC2370 Cell Signals
BIOC2900 Biochemistry Exchange Elective
BIOL2054 Bioenergy and Biofuels
BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals
BIOL2463 Sustainable Land Use
BIOL2465 Tropical Horticulture

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

MINOR IN BIOLOGY: [Course Descriptions](#)

LEVEL I (9 CREDITS)

BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics

LEVELS II & III (15 CREDITS)

BIOC2371 Molecular Techniques*

AND

BIOL2370 Flowering Plant Physiology

OR

BIOL2371 Ecophysiology of Animals

AND Three (3) Courses (9 Credits) from

Biological Sciences Elective Courses:

Level II BIOC/BIOL/ECOL/MICR courses (excluding

BIOL2373 Skills for Biologists)

Level III BIOC/BIOL/ECOL/MICR courses

*BIOC2371 Molecular Techniques must be replaced in the BIOL Minor by any BIOC/BIOL/ECOL/MICR 3-credit, level II or III course when BIOC2371 Molecular Techniques is being used in the BIOC, ECOL or MICR major.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

DOUBLE MAJOR IN BIOLOGICAL SCIENCES: [Course Descriptions](#)

LEVEL I (12 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics

BIOL2900 Biology Exchange Elective
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ECOL2462 Marine Biota
ECOL2900 Ecology Exchange Elective
MICR2260 Essential Microbiology
MICR2261 Eukaryotic Microbes
MICR2262 Methods in Microbiology
MICR2900 Microbiology Exchange Elective¹

LEVELS II & III (60 CREDITS)

BIOC2365 Primary Metabolism
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists¹

ECOL2460 Essentials of Ecology
MICR2260 Essential Microbiology

TWO (2) of the following (6 Credits)

BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals

NINE (9) Credits from:

Level II BIOC/BIOL/ECOL/MICR courses

THIRTY (30) Credits from:

Level III BIOC/BIOL/ECOL/MICR courses

BIOLOGICAL SCIENCES ELECTIVE COURSES

LEVEL II Courses:

BIOC2365 Primary Metabolism
BIOC2366 Protein Biochemistry
BIOC2340 Biochemistry of Tastes and Flavours
BIOC2370 Cell Signals
BIOC2900 Biochemistry Exchange Elective
BIOL2054 Bioenergy and Biofuels
BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals
BIOL2463 Sustainable Land Use
BIOL2465 Tropical Horticulture
BIOL2466 Tropical Energy and Bioprocessing

LEVEL III Courses:

BIOC3050 Biochemistry of a Changing Planet
BIOC3260 Principles of Biotechnology
BIOC3261 Mitochondrial Bioenergetics
BIOC3370 Basis of Human Disease
BIOL3501 Professional Placement for Biologists
BIOL3901 Multidisciplinary Project
BIOL3990 Biology Project (6 credits)*²
BIOC3265 Principles of Bioinformatics
BIOL3025 Molecular Plant Pathology
ECOL3100 Statistics for Ecologists
ECOL3454 Fisheries Biology
ECOL3460 Biology & Ecology of Coral Reefs²
ECOL3461 Ecology of a Changing Planet
ECOL3463 Tropical Crop Ecology
ECOL3990 Ecology Project (6 credits)*²
MICR3265 Microbiology of Food
MICR3266 Ecology of Microorganisms
MICR3267 Essential Virology
MICR3268 Microbial Pathogenesis

*Only ONE of these courses may be used to satisfy the DOUBLE MAJOR IN BIOLOGICAL SCIENCES

¹This course is offered in both semesters but it is recommended that Biological Science Double Majors take this course in Semester 2.

²Students wishing to pursue this course must be able to swim.

MAJOR IN ECOLOGY: [Course Descriptions](#)

LEVEL I (12 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics

LEVELS II & III (30 CREDITS)

LEVEL II (12 CREDITS)

BIOL2373 Skills for Biologists^{1,2}
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ECOL2462 Marine Biota

LEVEL II/III (18 CREDITS)

ECOL3461 Ecology of a Changing Planet
ECOL3100 Statistics for Ecologists

AND Twelve (12) Credits from the following:

LEVEL II/III ECOL Elective Courses

ECOL2900 Ecology Exchange Elective
ECOL3454 Fisheries Biology
ECOL3460 Biology & Ecology of Coral Reefs³
ECOL3462 Behaviour: An Evolutionary Approach
ECOL3463 Tropical Crop Ecology
ECOL3990 Ecology Project (6 credits)

AND/OR

BIOC2371 Molecular Techniques
BIOL2372 Plants for Caribbean Landscapes
ENSC2000 Essentials of Oceanography**
MICR3266 Ecology of Microorganisms***

A student wishing an Ecology Major with a marine focus may select ENSC2000 Oceanography, ECOL3454 Fisheries Biology and ECOL 3460 Biology and Ecology of Coral Reefs. A student wishing a more terrestrial focus to their Ecology Major may select ECOL3462 Behaviour: An Evolutionary Approach and ECOL 3463 Tropical Crop Ecology. The Ecology offerings are completed by two further compulsory courses; one which exposes students to the impacts of humankind on biodiversity (ECOL3461 Ecology of a Changing Planet) and one which develops methodological and analytical skills (ECOL3100 Statistics for Ecologists).

**Requires METE1110 Introduction to Oceans and Climate or ENSC1000 Earth and its Environment.

***Requires MICR2260 Essential Microbiology (or MICR2251 General Microbiology) and MICR2261 Eukaryotic Microbes (or MICR2252 Eukaryotic Micro-organisms).

¹This course is offered in both semesters, but it is recommended that Ecology Majors take this course in Semester 2.

²Students following this Major who have passed BIOL1010 Basic Skills for Biologists cannot take BIOL2373 Skills for Biologists but must substitute this course with any BIOC/BIOL/ECOL/MICR level II or III course.

³Students wishing to pursue this course must be able to swim and snorkel competently.

THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026

MINOR IN ECOLOGY: [Course Descriptions](#)

LEVEL I (6 CREDITS)

BIOL1020 Diversity of Life I

BIOL1025 Diversity of Life II

LEVELS II & III (15 CREDITS)

ECOL2460 Essentials of Ecology

ECOL2461 Caribbean Island Biodiversity

ECOL2462 Marine Biota

ECOL3461 Ecology of a Changing Planet

AND Three (3) Credits from the following:

ECOL3100 Statistics for Ecologists

ECOL3460 Biology & Ecology of Coral Reefs¹

ECOL3463 Tropical Crop Ecology

¹Students wishing to pursue this course must be able to swim.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

MAJOR IN MICROBIOLOGY: [Course Descriptions](#)

LEVEL I (12 CREDITS)

- BIOC1015 Introduction to Biochemistry
- BIOL1020 Diversity of Life I
- BIOL1025 Diversity of Life II
- BIOL1030 Introduction to Genetics

¹This course is offered in both semesters but it is recommended that Microbiology Majors take this course in Semester 1.

LEVELS II & III (30 CREDITS)

²No more than two of these elective courses can be used for the Microbiology major.

³In order to avoid a clash between BIOC2370 and MICR3265 these two electives cannot be taken in the same year.

LEVEL II (18 CREDITS)

- BIOC2365 Primary Metabolism
- BIOC2371 Molecular Techniques
- BIOL2373 Skills for Biologists¹
- MICR2260 Essential Microbiology
- MICR2261 Eukaryotic Microbes
- MICR2262 Methods in Microbiology

LEVEL II & III (12 CREDITS)

Twelve (12) Credits from the following:

- BIOL3025 Molecular Plant Pathology
- MICR2900 Microbiology Exchange Elective
- MICR3265 Microbiology of Food³
- MICR3266 Ecology of Microorganisms
- MICR3267 Essential Virology
- MICR3268 Microbial Pathogenesis
- MICR3990 Microbiology Project (6 credits)
- BIOL2166 Advanced Genetics I²
- HESC3003 Environmental Health²
- BIOC3260 Principles of Biotechnology²
- BIOC2370 Cell Signals^{2,3}
- PHIL3120 Biomedical Ethics²

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

MINOR IN MICROBIOLOGY: [Course Descriptions](#)

LEVEL I (12 CREDITS)

BIOC1015 Introduction to Biochemistry

BIOL1020 Diversity of Life I

BIOL1025 Diversity of Life II

BIOL1030 Introduction to Genetics

LEVELS II & III (15 CREDITS)

MICR2260 Essential Microbiology

AND Twelve (12) Credits from the following:

MICR2261 Eukaryotic Microbes

MICR2262 Methods in Microbiology

MICR2900 Microbiology Exchange Elective

MICR3265 Microbiology of Food

MICR3266 Ecology of Microorganisms

MICR3267 Essential Virology

MICR3268 Microbial Pathogenesis

BIOL3025 Molecular Plant Pathology

CHEMICAL SCIENCES

The Department of Biological & Chemical Sciences offers a Single Major, Double Major and Minor in Chemistry.

MAJOR IN CHEMISTRY: [Course Descriptions](#)

LEVEL I (12 CREDITS)

CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry

*Students wishing to pursue this elective should ensure that they have the relevant Level II prerequisite course: CHEM2725 Chemistry of the Environment.

LEVEL II & III (30 CREDITS)

LEVEL II (18 CREDITS)

CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis

LEVEL III (12 Credits)

CHEM3625 Laboratory Methods in Chemistry III

AND Six (6) Credits from:

CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND Three (3) Credits from:

CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and
Toxicology*

THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026

MINOR IN CHEMISTRY: [Course Descriptions](#)

LEVEL I (12 CREDITS)

CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry

LEVEL II (15 CREDITS)

CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II

DOUBLE MAJOR IN CHEMISTRY: [Course Descriptions](#)

LEVEL I (12 CREDITS)

CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry

BIOC2365 Primary Metabolism **OR**
ENSC2000 Essentials of Oceanography**
OR
ENSC2003 Sustainable Energy Systems

LEVEL II (18 CREDITS)

CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis

*Students wishing to pursue this elective should ensure that they have the relevant Level II prerequisite course CHEM2725 Chemistry of the Environment.

**Students wishing to pursue this elective should ensure that they have the relevant Level I prerequisite course METE1110 Introduction to Ocean and Climate or ENSC1000 Earth and its Environment or METE1200 Oceans and Climate.

LEVEL III (12 CREDITS)

CHEM3625 Laboratory Methods in Chemistry III
CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND Thirty (30) Credits from:

CHEM2725 Chemistry of the Environment
CHEM2513 Fundamentals of Teaching Chemistry
CHEM3635 Biological Inorganic Chemistry
CHEM3218 Environmental Chemistry and Toxicology*
CHEM3630 Methods in Instrumental Analysis
CHEM3800 Nanostructures and Supramolecular Chemistry
CHEM3955 Research Project in Chemistry (6 Credits)
CHEM3990 Professional Placement for Chemists
CHEM3992 Special Topics in Physical Chemistry

ENVIRONMENTAL SCIENCE

The Department of Biological & Chemical Sciences offers a Single Major and Minor in Environmental Science as well as a Minor in Sustainability of the Caribbean, that it is only offered in Semester 1. Currently only the Biology, Ecology, Chemistry and Meteorology Major may be combined with the Environmental Science Major or Minor. Students wishing to combine Environmental Science Major with a Major of another discipline, such as Management or another major outside of the Faculty must seek the approval of the Dean and are advised that timetable clashes of courses may make it impossible to complete such degrees in the minimum 3-year period.

MAJOR IN ENVIRONMENTAL SCIENCE: [Course Descriptions](#)

LEVEL I (6 CREDITS)

METE1110 Introduction to Oceans & Climate
OR ENSC1000 Earth and its Environment
AND ENSC1005 Landform Dynamics

ENSC3103 Landscapes and Landforms of the Lesser Antilles

ENSC3900 Research Project in Environmental Science

GOVT3025 International Environmental Politics**

HESC3003 Environmental Health**

LAW3450 Caribbean Environmental Law**

OR LAW3460 International Environmental Law**

METE3505 Climate, Biosphere and Ecosystems

PHIL3110 Environmental Ethics**

LEVEL II/III (30 CREDITS)

ENSC2000 Essentials of Oceanography
ENSC2002 Earth's Climate
ENSC2005 Earth Life Cycles

And Twenty-one (21) Credits from Levels II/III

Environmental Science Electives Courses below:

CHEM2725 Chemistry of the Environment*

ENSC2003 Sustainable Energy Systems

ECOL2460 Essentials of Ecology***

ECOL2461 Caribbean Island Biodiversity***

HIST2810 Global Environmental Issues: Past, Present, and Future**

ENSC2900 Environmental Science Exchange

CHEM3218 Environmental Chemistry and Toxicology

ENSC3000 Climate Variation and Change

ENSC3001 Natural Hazards and Disasters

ENSC3005 Urban Geomorphology

ENSC3020 Case Study in Environmental Science

ENSC3090 Professional Placement for

Environmental Science

*Students wishing to pursue this elective should ensure that they have the relevant Level I prerequisite course CHEM1125 Introduction to Experimental Chemistry.

**No Pre-Requisites.

***Students wishing to pursue this elective should ensure that they have the relevant Level I prerequisite courses BIOL1020 Diversity of Life I and BIOL1025 Diversity of Life II.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

MINOR IN ENVIRONMENTAL SCIENCE: [Course Descriptions](#)

LEVEL I (6 Credits)

METE1110 Introduction to Oceans & Climate
OR ENSC1000 Earth and its Environment
AND ENSC1005 Landform Dynamics

*Students wishing to pursue this elective should ensure that they have the relevant Level I prerequisite course CHEM1125 Introduction to Experimental Chemistry.

**No Pre-Requisites.

LEVELS II/III (15 CREDITS)

Three (3) credits from the following:

ENSC2000 Essentials of Oceanography
ENSC2002 Earth's Climate
ENSC2005 Earth Life Cycles

AND Twelve (12) Credits from the following

Levels II and III Courses below:

CHEM2725 Chemistry of the Environment*
ENSC2000 Essentials of Oceanography
ENSC2002 Earth's Climate
ENSC2003 Sustainable Energy Systems
ENSC2005 Earth Life Cycles
HIST2810 Global Environmental Issues: Past, Present, and Future
ENSC2900 Environmental Science Exchange
CHEM3218 Environmental Chemistry and Toxicology
ENSC3000 Climate Variation and Change
ENSC3001 Natural Hazards and Disasters
ENSC3005 Urban Geomorphology
ENSC3020 Case Study in Environmental Science
HESC3003 Environmental Health**
LAW3450 Caribbean Environmental Law**
OR LAW3460 International Environmental Law**
PHIL3110 Environmental Ethics**

MINOR IN SUSTAINABILITY OF THE CARIBBEAN: [Course Descriptions](#)

LEVEL I (24 CREDITS)

At least 12 Level I credits from the FST

At most 12 Level I credits from any Faculty

LEVELS III (FIFTEEN (15) CREDITS)*

ENSC3100 Principles of Sustainability

ENSC3101 Climate & Weather in the Caribbean

ENSC3102 Biodiversity in the Caribbean

ENSC3901 Barbados Research Project (6 credits)

*Pre-requisites: Enrolment in the Sustainability Minor, which requires students to have completed all level 1 credits as well as 21 credits at level 2 & 3, and have a GPA ≥ 3.0 , or at the discretion of the coordinator of the programme for student with a lower GPA.

These Level III minor courses are delivered as a block in Semester 1. Consequently, no other courses may be taken concurrently, nor can these courses be taken individually.

FOOD SCIENCE

The Department of Biological & Chemical Sciences offers a Minor in Food Science which may be combined with a major in the Faculty of Science and Technology. Students wishing to combine Food Science minor with a Major of another discipline outside of the Department of Biological and Chemical Sciences are advised that timetable clashes of courses may make it impossible to complete such degrees in the minimum 3-year period.

MINOR IN FOOD SCIENCE: Course Descriptions

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
CHEM1125 Introduction to Experimental Chemistry
Three (3) Level I credits from the FST
Twelve (12) Level I credits from any Faculty

¹Requires MICR2260 Essential Microbiology

No Pre-Requisites.

^{**}Offered in summer. Summer courses may attract the summer school fee.

^{***}Offered in Semesters I and II and summer

LEVELS II/III (FIFTEEN (15) CREDITS)

CHEM2406 Food Chemistry*
FDSC2000 Fundamentals of Food Processing
FDSC2001 Principles of Food Science
MICR3265 Microbiology of Food¹

AND Three (3) Credits from the following Levels

II and III Courses below:

BIOC2340 Biochemistry of Tastes and Flavours**
BIOL3990 Professional Placement for Biologists**
CHEM3990 Professional Placement for Chemists**
FDSC2300 Food Fermentation
FDSC3300 Project for Food Science Minors***
HDNT2003 Food Service Management Systems
HDNT2006 Food Law and Regulation in the Caribbean*

PROGRAMME STRUCTURE

BIOLOGICAL SCIENCES, CHEMICAL SCIENCES, ENVIRONMENTAL SCIENCE, FOOD SCIENCE

BSc BIOCHEMISTRY

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry

BIOC3261 Mitochondrial Bioenergetics
BIOC3050 Biochemistry of a Changing Planet
BIOC3990 Biochemistry Project (6 credits)
BIOL3025 Molecular Plant Pathology
CHEM3635 Biological Inorganic Chemistry

AND Thirty (30) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

LEVELS II & III (60 CREDITS)

LEVEL II (15 CREDITS)

BIOC2365 Primary Metabolism
BIOC2366 Protein Biochemistry
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists¹
AND Three (3) Credits from:
BIOC2370 Cell Signal
BIOL2166 Advanced Genetics I

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

LEVEL III (15 CREDITS)

BIOC3265 Principles of Bioinformatics
AND Twelve (12) Credits from:
BIOC2900 Biochemistry Exchange Elective
BIOC3050 Biochemistry of a Changing Planet
BIOC3370 Basis of Human Disease
BIOC3260 Principles of Biotechnology

BSc BIOLOGY

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry

BIOL1020 Diversity of Life I

BIOL1025 Diversity of Life II

BIOL1030 Introduction to Genetics

AND Twelve (12) Level I Credits from any Faculty

LEVELS II/III (60 CREDITS)

BIOC2371 Molecular Techniques

BIOL2373 Skills for Biologists

AND Six (6) Credits from:

BIOC2365 Primary Metabolism

ECOL2460 Essentials of Ecology

MICR2260 Essentials Microbiology

AND Six (6) Credits from:

BIOL2166 Advanced Genetics I

BIOL2370 Flowering Plant Physiology

BIOL2371 Ecophysiology of Animals

AND Six (6) Credits from Levels II/III Biological Sciences Elective Courses:

Level II BIOC/BIOL/ECOL/MICR courses

Level III BIOC/BIOL/ECOL/MICR courses

AND Six (6) Credits from Level III Biological Sciences Elective Courses:

Level III BIOC/BIOL/ECOL/MICR courses

AND Thirty (30) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc BIOLOGICAL SCIENCES (DOUBLE)

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry

BIOL1020 Diversity of Life I

BIOL1025 Diversity of Life II

BIOL1030 Introduction to Genetics

AND Twelve (12) Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

BIOC2365 Primary Metabolism

BIOC2371 Molecular Techniques

BIOL2373 Skills for Biologists

ECOL2460 Essentials of Ecology

MICR2260 Essentials Microbiology

AND Six (6) Credits from:

BIOL2166 Advanced Genetics I

BIOL2370 Flowering Plant Physiology

BIOL2371 Ecophysiology of Animals

AND Nine (9) Credits from Levels II Biological

Sciences Elective Courses:

Level II BIOC/BIOL/ECOL/MICR courses

AND Thirty (30) Credits from Level III Biological

Sciences Elective Courses:

Level III BIOC/BIOL/ECOL/MICR courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ECOLOGY

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry

BIOL1020 Diversity of Life I

BIOL1025 Diversity of Life II

BIOL1030 Introduction to Genetics

AND Twelve (12) Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (12 CREDITS)

BIOL2373 Skills for Biologists

ECOL2460 Essentials of Ecology

ECOL2461 Caribbean Island Biodiversity

ECOL2462 Marine Biota

AND Thirty (30) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

LEVEL III (18 CREDITS)

ECOL3100 Statistics for Ecologists

ECOL3461 Ecology of a Changing Planet

AND Twelve (12) Credits from:

BIOC2371 Molecular Techniques

BIOL2372 Plants for Caribbean Landscapes

ECOL3454 Fisheries Biology

ECOL3460 Biology & Ecology of Coral Reefs

ECOL3463 Tropical Crop Ecology

ECOL3462 Behaviour: An Evolutionary Approach

ECOL3990 Ecology Project (6 credits)

ENSC2000 Essentials of Oceanography

MICR3266 Ecology of Microorganisms

BSc MICROBIOLOGY

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry

BIOL1020 Diversity of Life I

BIOL1025 Diversity of Life II

BIOL1030 Introduction to Genetics

AND Twelve (12) Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II/III (30 CREDITS)

BIOC2365 Primary Metabolism

BIOC2371 Molecular Techniques

BIOL2373 Skills for Biologists

MICR2260 Essential Microbiology

MICR2261 Eukaryotic Microbes

MICR2262 Methods in Microbiology

AND Thirty (30) Levels II and III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

***FOUN1101 Caribbean Civilization

***FOUN1301 Law, Economy, Governance and Society

*No more than two (2) of these can be used for the Microbiology Major.

** Substitute Exchange Course.

***A student may substitute one of these with a Foreign Language course.

Twelve (12) credits from:

BIOC2370 Cell Signals*

BIOL2166 Advanced Genetics*

MICR2900 Microbiology Exchange Elective**

BIOC3260 Principles of Biotechnology*

BIOL3025 Molecular Plant Pathology

MICR3265 Microbiology of Food

MICR3266 Ecology of Microorganisms

MICR3267 Essential Virology

MICR3268 Microbial Pathogenesis

MICR3990 Microbiology Project (6 Credits)

HESC3003 Environmental Health*

PHIL3120 Biomedical Ethics*

BSc CHEMISTRY

LEVEL I (24 CREDITS)

CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
AND Twelve (12) Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (18 CREDITS)

CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis

LEVEL III (12 CREDITS)

CHEM3625 Laboratory Methods in Chemistry III

AND Six (6) Credits from:

CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND Three (3) Credits from:

CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and
Toxicology*

AND Thirty (30) Levels II and III Credits from any Faculty. Three (3) of these credits can come from a Co-curricular course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing
AND

**FOUN1101 Caribbean Civilization

**FOUN1301 Law, Economy, Governance and Society

*Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course CHEM2725 Chemistry of the Environment.

**A student may substitute one of these with a Foreign Language course

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc CHEMISTRY (DOUBLE)

LEVEL I (24 CREDITS)

CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
AND Twelve (12) Level I Credits from any Faculty

CHEM3992 Special Topics in Physical Chemistry

BIOC2365 Primary Metabolism

OR

ENSC2000 Essentials of Oceanography***

OR

ENSC2003 Sustainable Energy Systems

LEVELS II & III (60 CREDITS)

LEVEL II (18 CREDITS):

CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

****FOUN1101 Caribbean Civilization

****FOUN1301 Law, Economy, Governance and Society

*Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course CHEM2725 Chemistry of the Environment.

**Offered in Summer only.

***Students wishing to pursue this elective should ensure that they have the relevant Level I prerequisite courses: METE1110 Introduction to Ocean and Climate OR ENSC1000 Earth and its Environment OR METE1200 Oceans and Climate.

****A student may substitute one of these with a Foreign Language course.

LEVEL III (12 CREDITS)

CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry
CHEM3625 Laboratory Methods in Chemistry III

AND THIRTY (30) CREDITS from:

CHEM2513 Fundamentals of Teaching Chemistry
CHEM2725 Chemistry of the Environment
CHEM3635 Biological Inorganic Chemistry
CHEM3218 Environmental Chemistry and Toxicology*
CHEM3630 Methods in Instrumental Analysis
CHEM3800 Nanostructures and Supramolecular Chemistry
CHEM 3955 Research Project in Chemistry (6 Credits)
CHEM3990 Professional Placement for Chemists**

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc BIOCHEMISTRY AND CHEMISTRY

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry

LEVELS II & III (60 CREDITS)

LEVEL II (33 CREDITS)

BIOC2365 Primary Metabolism
BIOC2366 Protein Biochemistry
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis
AND Three (3) Credits from:
BIOC2370 Cell Signal
BIOL2166 Advanced Genetics I

LEVEL III (27 CREDITS)

BIOC3265 Principles of Bioinformatics
CHEM3625 Laboratory Methods in Chemistry III
AND Twelve (12) Credits from:
BIOC2900 Biochemistry Exchange Elective
BIOC3370 Basis of Human Disease
BIOC3260 Principles of Biotechnology
BIOC3261 Mitochondrial Bioenergetics
BIOC3050 Biochemistry of a Changing Planet

BIOC3990 Biochemistry Project (6 credits)

BIOL3025 Molecular Plant Pathology

CHEM3635 Biological Inorganic Chemistry

AND Six (6) Credits from:

CHEM3167 Advanced Inorganic Chemistry

CHEM3175 Advanced Organic Chemistry

CHEM3620 Advanced Physical Chemistry

AND Three (3) Credits from:

CHEM3630 Methods in Instrumental Analysis

CHEM3218 Environmental Chemistry and

Toxicology*

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

**FOUN1101 Caribbean Civilization

**FOUN1301 Law, Economy, Governance and Society

*Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course CHEM2725 Chemistry of the Environment.

**A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc BIOLOGY AND CHEMISTRY

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry

AND Three (3) Credits from:

CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and
Toxicology*

LEVELS II & III (60 CREDITS)

LEVEL II (36 CREDITS)

BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis

AND Six (6) Credits from:

BIOC2365 Primary Metabolism
ECOL2460 Essentials of Ecology
MICR2260 Essentials Microbiology

AND Six (6) Credits from:

BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals

AND Six (6) Credits from Levels II/III Biological Sciences Elective Courses:

Level II BIOC/BIOL/ECOL/MICR courses
Level III BIOC/BIOL/ECOL/MICR courses

AND Six (6) Credits from Level III Biological Sciences Elective Courses:

Level III BIOC/BIOL/ECOL/MICR courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

**FOUN1101 Caribbean Civilization

**FOUN1301 Law, Economy, Governance and Society

*Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course CHEM2725 Chemistry of the Environment.

**A student may substitute one of these with a Foreign Language course.

LEVEL III (24 CREDITS)

CHEM3625 Laboratory Methods in Chemistry III

AND Six (6) Credits from:

CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ENVIRONMENTAL SCIENCE

LEVEL I (24 CREDITS)

METE1110 Introduction to Oceans & Climate

OR

ENSC1000 Earth and its Environment

AND

ENSC1005 Landform Dynamics

AND Six (6) Level I Credits from FST Courses

AND Twelve (12) Level I Credits from any Faculty.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

**FOUN1101 Caribbean Civilization

**FOUN1301 Law, Economy, Governance and Society

**A student may substitute one of these with a Foreign Language course.

LEVELS II & III (60 CREDITS)*

LEVEL II/III (30 CREDITS)

ENSC2000 Essentials of Oceanography

ENSC2005 Earth Life Cycles

ENSC2002 Earth's Climate

AND Twenty-one (21) Credits from Environmental Science Electives Courses

AND Thirty (30) Levels II and III credits from any Faculty. Three (3) of these credits can come from a Co-Curricular course.

***Students must complete 30 Level II/III FST credits.**

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc BIOLOGY AND ENVIRONMENTAL SCIENCE

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
METE1110 Introduction to Oceans & Climate
OR ENSC1000 Earth and its Environment
AND ENSC1005 Landform Dynamics
AND Six (6) Level I Credits from any Faculty.

LEVELS II & III (60 CREDITS)

LEVEL II (33 CREDITS)

BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
ENSC2000 Essentials of Oceanography
ENSC2005 Earth Life Cycles
ENSC2002 Earth's Climate

AND Six (6) Credits from:

BIOC2365 Primary Metabolism
ECOL2460 Essentials of Ecology
MICR2260 Essentials Microbiology

AND Six (6) Credits from:

BIOL2166 Advanced Genetics I
BIOL2370 Flowering Plant Physiology
BIOL2371 Ecophysiology of Animals

AND Six (6) Credits from Levels II/III Biological Sciences Elective Courses:

Level II BIOC/BIOL/ECOL/MICR courses
Level III BIOC/BIOL/ECOL/MICR courses

LEVEL III (27 CREDITS)

AND Six (6) Credits from Level III Biological Sciences Elective Courses:
Level III BIOC/BIOL/ECOL/MICR courses
AND Twenty-one (21) Credits from Environmental Science Electives Courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc CHEMISTRY AND ENVIRONMENTAL SCIENCE

LEVEL I (24 CREDITS)

CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
METE1110 Introduction to Oceans & Climate
OR ENSC1000 Earth and its Environment
AND ENSC1005 Landform Dynamics
AND Six (6) Level I Credits from any Faculty.

LEVELS II & III (60 CREDITS)

LEVEL II (27 CREDITS)

CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis
ENSC2000 Essentials of Oceanography
ENSC2005 Earth Life Cycles
ENSC2002 Earth's Climate

LEVEL III (33 CREDITS)

CHEM3625 Laboratory Methods in Chemistry III
AND Six (6) Credits from:
CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry
AND Three (3) Credits from:
CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and
Toxicology*

**AND Twenty-one (21) Credits from
Environmental Science Electives Courses**

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
**FOUN1101 Caribbean Civilization
**FOUN1301 Law, Economy, Governance and Society

*Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course CHEM2725 Chemistry of the Environment.

**A student may substitute one of these with a Foreign Language course.

***Level 2/3 courses cannot be used to satisfy more than one major requirement.

BSc CHEMISTRY AND MATHEMATICS

LEVEL I (27 CREDITS)

CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1235 Python Programming & Mathematical Software

CHEM3620 Advanced Physical Chemistry

AND Three (3) Credits from:

CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and Toxicology*

AND

MATH3555 Complex Analysis

OR

MATH3560 Metric Spaces

AND Three (3) Credits from Mathematics Elective Courses

LEVELS II & III (60 CREDITS)

LEVEL II (33 CREDITS)

CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis
MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

**FOUN1101 Caribbean Civilization

**FOUN1301 Law, Economy, Governance and Society

*Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course CHEM2725 Chemistry of the Environment.

**A student may substitute one of these with a Foreign Language course.

LEVEL III (27 CREDITS)

CHEM3625 Laboratory Methods in Chemistry III

MATH3543 Abstract Algebra 2

MATH3545 Linear Algebra 2

MATH3550 Real Analysis 2

AND Six (6) Credits from:

CHEM3167 Advanced Inorganic Chemistry

CHEM3175 Advanced Organic Chemistry

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc CHEMISTRY AND MICROBIOLOGY

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
CHEM1110 Introduction to Organic Chemistry
CHEM1120 Introduction to Physical Chemistry
CHEM1125 Introduction to Experimental Chemistry
CHEM1130 Introduction to Inorganic Chemistry

LEVELS II & III (60 CREDITS)

LEVEL II (36 CREDITS)

BIOC2365 Primary Metabolism
BIOC2371 Molecular Techniques
BIOL2373 Skills for Biologists
CHEM2700 Intermediate Inorganic Chemistry
CHEM2705 Intermediate Organic Chemistry
CHEM2710 Intermediate Physical Chemistry
CHEM2715 Laboratory Methods in Chemistry I
CHEM2720 Laboratory Methods in Chemistry II
CHEM2730 Quantitative Chemical Analysis
MICR2260 Essential Microbiology
MICR2261 Eukaryotic Microbes
MICR2262 Methods in Microbiology

LEVEL III (24 CREDITS)

CHEM3625 Laboratory Methods in Chemistry III
AND Six (6) Credits from:

CHEM3167 Advanced Inorganic Chemistry
CHEM3175 Advanced Organic Chemistry
CHEM3620 Advanced Physical Chemistry

AND Three (3) Credits from:

CHEM3630 Methods in Instrumental Analysis
CHEM3218 Environmental Chemistry and
Toxicology*

AND Twelve (12) Credits from:

BIOC2370 Cell Signals***
BIOL2166 Advanced Genetics***
MICR2900 Microbiology Exchange Elective**
BIOC3260 Principles of Biotechnology***
BIOL3025 Molecular Plant Pathology
MICR3265 Microbiology of Food
MICR3266 Ecology of Microorganisms
MICR3267 Essential Virology
MICR3268 Microbial Pathogenesis
MICR3990 Microbiology Project (6 Credits)
HESC3003 Environmental Health***
PHIL3120 Biomedical Ethics***

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
****FOUN1101 Caribbean Civilization
****FOUN1301 Law, Economy, Governance and Society

*Students wishing to pursue this course should ensure that they have the relevant Level II prerequisite course CHEM2725 Chemistry of the Environment.

**Substitute Exchange Course.

***No more than two (2) of these can be used for the Microbiology Major.

****A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ECOLOGY AND ENVIRONMENTAL SCIENCE

LEVEL I (24 CREDITS)

BIOC1015 Introduction to Biochemistry
BIOL1020 Diversity of Life I
BIOL1025 Diversity of Life II
BIOL1030 Introduction to Genetics
METE1110 Introduction to Oceans & Climate
OR ENSC1000 Earth and its Environment
AND ENSC1005 Landform Dynamics
AND Six (6) Level I Credits from any Faculty.

AND Twenty-one (21) Credits from
Environmental Science Electives Courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**Level 2/3 courses cannot be used to satisfy more than one major requirement.

LEVELS II & III (60 CREDITS)

LEVEL II (21 CREDITS)

BIOL2373 Skills for Biologists
ECOL2460 Essentials of Ecology
ECOL2461 Caribbean Island Biodiversity
ECOL2462 Marine Biota
ENSC2000 Essentials of Oceanography
ENSC2005 Earth Life Cycles
ENSC2002 Earth's Climate

LEVEL III (39 CREDITS)

ECOL3100 Statistics for Ecologists
ECOL3461 Ecology of a Changing Planet
AND Twelve (12) Credits from:
BIOC2371 Molecular Techniques
BIOL2372 Plants for Caribbean Landscapes
ECOL3454 Fisheries Biology
ECOL3460 Biology & Ecology of Coral Reefs
ECOL3463 Tropical Crop Ecology
ECOL3462 Behaviour: An Evolutionary Approach
ECOL3990 Ecology Project (6 credits)
MICR3266 Ecology of Microorganisms

BSc ENVIRONMENTAL SCIENCE AND METEOROLOGY

LEVEL I (24 CREDITS)

METE1110 Introduction to Oceans and Climate
METE1125 Meteorological Observations,
Instruments & Basic Analysis
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
METE1400 Mathematical Methods for Meteorology
MATH1190 Calculus A
ENSC1000 Earth and its Environment
ENSC1005 Landform Dynamics

AND at LEAST Three (3) Credits from:

METE2305 Fundamentals of Hydrometeorology
METE3420 Radar Meteorology
METE3425 Satellite Meteorology
METE3505 Climate, Biosphere and Ecosystems
METE3600 Numerical Weather Prediction and
Computational Methods

**AND Twenty-one (21) Credits from
Environmental Science Electives Courses**

LEVELS II & III (60 CREDITS)

LEVEL II (24 CREDITS)

ENSC2000 Essentials of Oceanography
ENSC2005 Earth Life Cycles
ENSC2002 Earth's Climate
METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2125 Dynamic Meteorology
METE2210 Synoptic Meteorology
METE2215 Synoptic Meteorology Lab I

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign
Language course.

LEVEL III (36 CREDITS)

METE3110 Advanced Dynamic Meteorology
METE3210 Advanced Synoptic Meteorology
METE3215 Synoptic Meteorology Lab II
METE3310 The Tropics and Tropical Weather
Systems

THE FACULTY OF SCIENCE AND TECHNOLOGY UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026

All incoming students registered to take courses in the Department of Biological and Chemical Sciences **must attend a Safety Seminar** usually held during orientation/registration week. Students taking laboratory courses in this Department will only be allowed to perform experiments if dressed in an appropriate lab coat, lab goggles and enclosed shoes. Some exceptions may be made in the wearing of safety goggles for lab procedures where there is no risk of eye injury (e.g., microscope use).

PREPARING FOR THE LABORATORY - PPEs

SAFETY GLASSES AND
CHEMICAL SPLASH
GOOGLES ARE IMPORTANT
PROTECTION AGAINST
SPLASHES - BDS\$15

NITRILE GLOVES SHOULD BE
PUT ON AFTER ENTERING THE
LAB AND REMOVED BEFORE
LEAVING. WASH HANDS AFTER
REMOVAL. - BDS\$23 per box

PAGE 7

BIOLOGICAL SCIENCE COURSES

PRELIMINARY BIOLOGICAL SCIENCE COURSES

BIOL0051 - BIOLOGY I (6 Credits)

Pre-requisite: None

Syllabus: Cellular Biology: The historical development of Cell Theory. Prokaryotic and Eukaryotic cells. The Endosymbiotic Theory. Cellular structures and their functions. The cell membrane (The Fluid Mosaic Model). Cellular Transport. Microscopy. Biochemistry: The biochemistry and importance of water. Carbohydrates, proteins and lipids: Their structure and biological importance. Enzymes (structure and function). Nucleic Acids. Genetics: The history of Genetics. Modes of inheritance. The nature of the genetic material. Mutation. Nuclear division (mitosis and meiosis). Molecular Biology: DNA replication, transcription and translation. Reproductive Biology: Bacterial reproduction. Viral replication. Fungal reproduction. Human male and female reproductive systems. Reproduction in angiosperms

Teaching: Three lectures, one tutorial and three hours of practicals per week.

Method of Examination:

Theory: Final Examination (3 hours)	60%
Theory: In-course assessments	20%
Practical: Exercises and reports	20%

BIOL0052 - BIOLOGY II (6 Credits)

Pre-requisite: None

Syllabus: Bioenergetics: The acquisition of energy. The role of adenosine triphosphate (ATP) in the cell. How ATP is generated. Autotrophic nutrition (Photosynthesis). Heterotrophic nutrition. Cellular respiration. Biosystems Maintenance: The Human Digestive system - The structure and function of the human digestive system. The organs of the digestive system and their role. The types of digestion. The function of enzymes during digestion. The digestion, absorption and assimilation of carbohydrates. Proteins. Lipids The Human

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Excretory system - Excretory organs and excretory products in the human body. The macro- and microstructure of the kidney. The formation of urine. The counter-current multiplier of the kidney nephron. Osmoregulation in the kidney. Respiratory systems - The importance of respiratory surfaces in organisms. Common features of respiratory surfaces. Respiratory system in man. Respiratory surface in plants. Transport systems - Importance of transport systems in multicellular organisms. Structure and function of the transport system in humans. The cardiac cycle. The transport of oxygen and carbon dioxide in the blood. The Bohr shift. The role of white blood cells in conferring immunity. Structure and function of the transport tissue in plants. Structure and Movement - Comparison of endo-, exo- and hydrostatic skeletons. The endoskeleton in humans and its functions - The major bones of the human body. The structure of bone. The different types of joints. How movement is accomplished across joints. How muscle action brings about movement. Muscle contraction as explained using the sliding filament theory. Nervous and Hormonal Coordination - The importance of coordinated responses in organisms. The structure of nervous tissue. The organization of the nervous system. The reflex arc. The structure and regions of the brain. Generation and conduction of nervous impulses. The role of endocrine glands and hormones in the human body. Comparison of nervous and hormonal coordination. Ecology and Evolution: Energy transfer in the ecosystem. Biogeochemical cycles. The effect of biotic and abiotic factors on population distribution. Population dynamics (Demographics). How diversity arises. The importance of biodiversity in the ecosystem. Human impact on the environment.

Teaching: Three lectures, one tutorial and three hours of practicals per week.

Method of Examination:

Theory: Final Examination (3 hours)	60%
Theory: In-course assessments	20%
Practical: Exercises and reports	20%

LEVEL I BIOLOGICAL SCIENCE COURSES

BIOC1015 - INTRODUCTION TO BIOCHEMISTRY (3 Credits)

Pre-requisites: CAPE Chemistry Unit 1 (or CHEM0615) and CAPE Chemistry Unit 2 (or CHEM0625) or an approved equivalent

Anti-requisite: BIOC1351 Introductory Biochemistry

Syllabus: Water and acid/base chemistry: properties of water and aqueous solutions, ionization of water, weak acids and bases, buffers, Henderson-Hasselbach equation. Structure and function of biological molecules: lipids, carbohydrates, amino acids and proteins. Cell biology: structure and function of bacterial, plant and animal cells, and membrane transport. Cell fractionation: differential and sucrose centrifugation. Thermodynamics/bioenergetics: free energy, energy changes in redox reactions, ATP, substrate-level phosphorylation. Electron transport-based phosphorylation: oxidative phosphorylation in mitochondria, photophosphorylation in chloroplasts, chemiosmotic theory. Biochemical techniques: chromatography, electrophoresis. Carbohydrate metabolism: glycolysis and TCA cycle.

Teaching: 20 lectures (1h each), 6 tutorials (1h each) and 6 practical sessions (3h each),

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course tests and assignments	25%
Practical reports	25%

BIOL1020 - DIVERSITY OF LIFE I (3 Credits)

Pre-requisites: CAPE Biology Unit 1 (or BIOL0051) and CAPE Biology Unit 2 (or BIOL0052) OR CAPE Environmental Science Units 1 & 2 and CSEC Biology

Anti-requisite: BIOL1051 Biodiversity I

Syllabus: Evolution: Evolutionary theories. Mechanisms of evolution. Evidence of evolution. Ecology: Introduction to ecology. Major terrestrial biomes. Trophic structure and energy flow in ecosystems. The biodiversity concept. Two-species interactions within communities. Systematics: Principles of taxonomy (description, identification, nomenclature, classification) and the study of phylogeny. Classification systems. Simple cladograms. Microbial diversity: Microscopy: theoretical and practical aspects. Bacteria, Archaea, eukaryotic microorganisms, viruses. Plant diversity: What is a plant? Green algae: diversity of form, lifecycles, and sexual reproduction. Mosses & liverworts: key features, life cycle, spore dispersal mechanisms. Ferns & Fern allies: key features, life cycles. Evolution of seeds. Cycads & conifers: key features, life cycles. Angiosperms: unique attributes, floral trends, adaptations.

Teaching: 24 lectures (1h each) and 8 practical sessions (3h each).

Method of Examination:

Theory: Final examination (2 hours)	50%
Theory: In-course test(s)	10%
Practical: Reports, Quizzes	30%
Practical: Final practical test	10%

BIOL1025 - DIVERSITY OF LIFE II (3 Credits)

Pre-requisites: CAPE Biology Unit 1 (or BIOL0051) and CAPE Biology Unit 2 (or BIOL0052) OR CAPE Environmental Science Units I & 2 and CSEC Biology

Anti-requisite: BIOL1052 Biodiversity II

Syllabus: Sponges – cell aggregate body plan; filter feeding. Cnidarians and ctenophores - diploblastic, blind sac, radially symmetrical body plan; polymorphism. Flatworms – acoelomate, triploblastic, bilaterally symmetrical blind sac body plan; comparison of parasitic and free-living. Nematodes and rotifers – pseudocoelomate tube-within-a-tube body plan; eutely; parthenogenesis; life cycles. Molluscs – soft-bodied coelomates with a shell; adaptive radiation. Annelids – segmented worms. Arthropods - factors responsible for their success. Echinoderms – their unique features. The invertebrate chordates. Fish - evolution of bone, jaws and paired fins; adaptations to life in water. Amphibians - challenges to life on land and how these were met. Amniotes – the amniote egg; comparisons of amniote integuments. Birds – adaptations for flight. Mammals - reproductive patterns.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Teaching: 24 lectures (1h each) and 12 practical sessions (2 h each).

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course tests	10%
Practical: Quizzes, Lab reports, and Lab test	40%

BIOL1030 - INTRODUCTION TO GENETICS (3 Credits)

Pre-requisites: CAPE Biology Unit 1 (or BIOL0051) and CAPE Biology Unit 2 (or BIOL0052) OR CAPE Environmental Science Units 1 & 2 and CSEC Biology OR BCC Associate degree in Biology OR BCC Associate degree in Environmental Science and CSEC Biology

Anti-requisite: None

Syllabus: Cell division: The cell cycle, mitosis and meiosis. Heredity: Mendelian genetics, modifications from the basic principles, epistasis, linkage and sex-linked genes. The Nature of the Genetic Material: Experimental evidence implicating the nucleic acids. DNA structure and DNA conformation. Organization of eukaryotic chromatin. DNA Replication and Assortment: Semi-conservative replication. Modes of replication. The Genetic Material as an Information Carrier: The Central Dogma. Collinearity. Transcription and translation in prokaryotes & eukaryotes. Population Genetics: Gene pools; Transmission of genes between generations; Hardy-Weinberg (2 and 3 alleles); Selection pressures; selection against a recessive allele; mutation and migration.

Teaching: 18 lectures (1h each), 6 tutorials (1h each) and 8 practical sessions (3h each).

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course test(s) and assignments	25%
Practical: Quizzes, Exercises and Reports	25%

LEVEL II BIOLOGICAL SCIENCE COURSES

BIOC2340 - BIOCHEMISTRY OF TASTES AND FLAVOURS (3 Credits)

Pre-requisites: BIOC1015 Introduction to Biochemistry

Anti-requisite: None

Syllabus: The biochemistry & physiology of taste and smell. Examine the perception of taste across species. Tastant signal transmission (salty, sweet, umami, bitter, sour). Stages and biochemical processes when making fermented beverages. Brewing process, fermentation and conditioning. Flavours and aromas of fermented beverages (beer, wine, mead). Biochemistry of the secondary metabolites behind the flavours (e.g. cinnamon, vanilla, coffee, cocoa, pepper). Biochemistry of food browning (polyphenol oxidase (PPO) in fruits and vegetables) and oxidation. Inhibition of PPO activity in food preparation. Maillard reaction and browning.

Teaching: Twenty-four (24) hours of lectures and twelve (12) hours of practicals.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	20%
Practical:	30%

BIOC2365 - PRIMARY METABOLISM (3 Credits)

Pre-requisites: BIOC1015 Introduction to Biochemistry

Anti-requisite: BIOC2351 Biochemistry I

Syllabus: Glycolysis and TCA cycle; emphasis on thermodynamic favourability and regulation of pathways. Catabolism of hexoses other than glucose: disaccharides, glycogen and starch. Gluconeogenesis. Biosynthesis of sucrose, starch and glycogen. Glyoxylate shunt. Pentose phosphate pathways. Photosynthetic carbohydrate synthesis. Oxidation of fatty acids in mitochondria, peroxisomes, and glyoxysomes. Oxidation of unsaturated and odd-chain fatty acids. Ketone bodies. Fatty acid biosynthesis, including long chain and unsaturated fatty acids. Overview of amino acid catabolism. Nitrogen excretion and the urea cycle. Biosynthesis of amino acids. Nitrogen fixation and assimilation. Amino acids as biosynthetic precursors. DNA replication. Protein synthesis: transcription and translation. Regulation of prokaryotic gene expression, e.g., lac operon, trp operon and eukaryotic gene expression. Selected examples of water-soluble vitamins and lipid-soluble vitamins.

Teaching: Eighteen (18) hours of lectures; six (6) hours of tutorials and twenty-four (24) hours of practicals.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	25%
Practical:	25%

BIOC2366 - PROTEIN BIOCHEMISTRY (3 Credits)

Pre-requisites: BIOC1015 Introduction to Biochemistry

Anti-requisite: BIOC2352 Biochemistry II

Syllabus: Membrane proteins: structure and function. Protein purification. Definition, structure, mechanism and function of enzymes. Mathematical concepts related to the calculation of enzyme kinetics. Protein post-translational modifications and use of methods to determine protein structure and identity. Protein folding, mis-folding and mechanisms of protein degradation and turnover. Function of protein-protein interaction and suitable methods for investigating these.

Teaching: Eighteen (18) hours of lectures; six (6) hours of tutorials and twenty-four (24) hours of practicals.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	25%
Practical:	25%

BIOC2370 - CELL SIGNALS (3 Credits)

Pre-requisites: BIOC1015 Introduction to Biochemistry

Anti-requisite: BIOC3053 Cell Signalling

Syllabus: This course provides a comprehensive view of how eukaryotic cells communicate within themselves and between each other normally and in a diseased state. Hormonal signalling in animal systems will be examined, in addition to the regulatory mechanisms used to control these hormones. Animal examples (and selected examples of organisms) of hormonal signalling will be used to understand the biochemical modes of action of these chemical messengers.

Teaching: Eighteen (18) hours of lectures; six (6) hours of tutorials and twenty-four (24) hours of practicals.

Method of Examination:

Theory: Final Examination (2 hours) 50%

Theory: In-course Test(s)/Assignment(s) 25%

Practical: 25%

BIOC2371 - MOLECULAR TECHNIQUES (3 Credits)

Pre-requisites: BIOL1030 Introduction to Genetics

Anti-requisite: BIOL2152 General Molecular Biology

Syllabus: Isolation, detection and quantification of DNA, RNA and proteins. Gel electrophoresis and blotting techniques. Restriction and modification systems. Restriction mapping. Hybridization techniques. Gene and protein sequencing. Cloning and expression vectors. Cloning strategies. Construction of Gene libraries. Gene transfer systems. In vitro mutagenesis. Vector systems and detection tools. Selected new generation molecular techniques used in research.

Teaching: Eighteen (18) hours of lectures; six (6) hours of tutorials and twenty-four (24) hours of practicals.

Method of Examination:

Theory: Final Examination (2 hours) 50%

Theory: In-course Test(s)/Assignment(s) 25%

Practical: 25%

BIOC2900 - BIOCHEMISTRY EXCHANGE ELECTIVE (3 Credits)

Pre-requisites: Depends on Institution offering course

Syllabus: This course provides an administrative mechanism for a UWI student on exchange at another approved institution to take an elective course in Biochemistry which has no UWI equivalent. The course content will depend on the specific course delivered at the host institution.

Teaching: The teaching methodologies will be determined by the host institution.

Method of Examination:

The course assessment methods will be determined by the host institution.

BIOL2166 - ADVANCED GENETICS I (3 Credits)

Pre-requisites: BIOL1030 Introduction to Genetics

Anti-requisite: BIOL2151 Genetics I

Syllabus: Mutation and DNA repair: Gene, point mutations, chromosomal mutations and genomic mutations: origins, consequences and uses. Mutagens, modes of action and uses in mutation analysis. Mechanisms of DNA repair and disease effects of mutations in DNA repair systems. Gene and genome structure: Gene and genome structure and organization in eukaryotes and prokaryotes. Transposons, types and uses in genetic analyses. The C-value paradox and its interpretation. Extranuclear genomes (chloroplasts and mitochondria): Inheritance, detection and consequences of genes in extranuclear genomes. Gene expression regulation and RNA processing: Introns, exons, promoters, leaders, trailers, enhancers and silencers. Bacterial and viral systems: horizontal gene transfer: conjugation, transduction, transformation, lytic and lysogenic infection in bacteriophages and genetic mapping. Introduction to “cutting edge” topics in modern genetics.

Teaching: Eighteen (18) hours of lectures; six (6) hours of tutorials and twenty-four (24) hours of practical

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	25%
Practical: Quizzes, Exercises and Reports	25%

BIOL2370 - FLOWERING PLANT PHYSIOLOGY (3 Credits)

Pre-requisites: BIOL1020 Diversity of Life I AND BIOC1015 Introduction to Biochemistry

Anti-requisite: BIOL2053 Physiology of Plants & Animals or BIOL3053 Developmental Physiology.

Syllabus: Functional anatomy: plant cell types, tissues, primary and secondary growth. Water movement: water potential, xylem structure and function. Mineral nutrition: nutrient classification, ion movement. Gas exchange: guard cell structure and function. Photosynthesis: plastids, pigments, light reactions, C3/C4/CAM comparison. Translocation: phloem structure & function. Major stages in plant development: germination to senescence. Plant movements: nutation, tropisms and nasties. Phytohormones: major classes, roles in development. Practical experimental design and data analysis.

Teaching: Eighteen (18) hours of lectures; six (6) hours of tutorials and twenty-four (24) hours of practical.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	20%
Practical:	30%

BIOL2371 - ECOPHYSIOLOGY OF ANIMALS (3 Credits)

Pre-requisites: BIOL1025 Diversity of Life II

Anti-requisite: BIOL2053 Physiology of Plants & Animals or BIOL3053 Developmental Physiology.

Syllabus: The need for energy. Digestive systems. Acquisition of oxygen. Respiratory surfaces and ventilation in animals. Carriage of oxygen, respiratory pigments, oxygen dissociation curves. Components of circulatory

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

systems; right to left shunting. Renal and extra-renal organs. Osmoregulation and nitrogenous excretion in marine and freshwater animals. The challenge of maintaining water balance on land. Heat transfer between animals and the environment. Ectothermy and endothermy. Adaptations to cold and to hot, dry environments. Experimental design and data analysis.

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	20%
Practical: Laboratory/Field work	30%

BIOL2054 - BIOENERGY AND BIOFUELS (3 Credits)

Pre-requisites: None

Anti-requisite: None

Syllabus: The course examines the trusted and developing forms of biofuel biotechnology. It introduces a range of biomass energy sources (wood chips, cane bagasse, energy crops, sargassum etc.) as well as various biomass conversions and bioenergy technologies and will cover solid, liquid and gaseous biofuels, emphasizing major biofuels such as, biodiesel and bioethanol. Major bioenergy technologies and techniques such as anaerobic digestion and transesterification will also be addressed together with information/studies pertaining to the social and environmental impact of the generation and consumption of biofuels.

Teaching: Twenty-four (24) hours of lectures and eighteen (18) hours of practical/field work.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	30%
Practical: Laboratory/Field work	20%

BIOL2373 - SKILLS FOR BIOLOGISTS (3 Credits)

Pre-requisites: 15 credits of level-1 courses including 6 credits from Level 1 BIOC/BIOL courses. Restricted to students majoring or minoring in Biology, Ecology, Microbiology or Biochemistry.

Anti-requisite: BIOL1010 Basic Skills for Biologists.

Syllabus: Scientific enquiry, data handling and simple statistics: The scientific method. Developing a research plan. Simple experimental design. Categorical and continuous variables. Mode, median, mean, range, quartiles, variance and standard deviation. Hypothesis testing using p-values and confidence intervals. Frequency analysis (chi-square, odds ratio, relative risks). Separation of groups: Parametric tests (t-tests, ANOVA and LSD post-hoc test). Correlation analysis: Parametric (Pearson), Non-parametric (Spearman). Regression analysis (simple linear regression, multiple linear regression). Use of computer software tools for data analysis and presentation of results e.g., EXCEL, Genstat, R, SPSS. Data handling and graph preparation in Excel. Excel applications useful for descriptive statistics. Dealing with numbers and simple mathematical relationships: Scientific notation, decimal places, significant figures. Simple calculations with number in scientific notation.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Precision and accuracy. SI units and prefixes. The rules of exponents and logarithms. Simple calculations involving these. Scientific writing: The format of scientific reporting - Abstract, Introduction, Material and Methods, Results, Discussion, References. Finding relevant information on a topic using electronic and non-electronic sources. Citing and referencing sources. Understanding plagiarism. Common knowledge. Quotations. Use of text matching software, e.g., Turnitin.

Teaching: Twenty-four (24) hours of interactive lectures/tutorials AND Twelve (12) hours tutorials/assessments.

Method of Examination:

Coursework	100%
------------	------

BIOL2463 - SUSTAINABLE LAND USE (3 Credits)

Pre-requisite: Permission of the Department

Anti-requisite: BIOL2050 Sustainability & Land Use

Syllabus: Trade Policy Impact on Land Use and Food Security in the Caribbean; The State of Agriculture Today; Alternative Agricultural Systems; Agricultural Production in the Humid Tropics; Importance of Livestock in Tropical Agriculture; The Status of Animal Production in the Tropics; Livestock Production and Sustainability; Animal Productivity in the Tropics.

Teaching: The course will be taught intensively over four weeks in the summer, typically 3 days per week as part of the McGill-UWI BITS Programme. Lectures will be given during each of the morning sessions and labs/field trips will be held in the afternoon sessions.

Method of Examination:

Coursework	40%
Final examination (2 hours)	60%

BIOL2465 - TROPICAL HORTICULTURE (3 Credits)

Pre-requisites: BIOL1020 Diversity of Life I AND BIOL1025 Diversity of Life II

Anti-requisite: ECOL2055 Horticulture

Syllabus: The importance of horticulture. Principles and practices of plant propagation. Impact of environmental, agronomic and cultural factors on growth and development of plants; protected agriculture technology. Growing media characteristics. Water and nutrient management. Crop protection: management of biotic stresses (weeds, pests and diseases). Production, post-harvest handling and value chain elements of select tropical fruits, vegetables and cut-flowers. Turf establishment and management. Tree establishment and management. Introduction to the international framework for global trade in horticultural species.

Teaching: Twenty-four (24) hours of lectures and twenty-four (24) hours of laboratory work /field trips.

Method of Examination:

Final Examination (2 hours)	50%
Coursework (incl. field work, practicals, quizzes)	50%

Biol2466 - TROPICAL ENERGY AND BIOPROCESSING (3 Credits)

Pre-requisite: Permission of the Department

Anti-requisite: BIOL2055 Bioprocessing & Tropical Energy.

Syllabus: Tropical energy issues and approaches – Energy vs food debate; Introduction to the scope of bioprocessing industries – definitions, technology and products; Basic biofuel processing concepts; Economics of bioenergy, including economics of conservation and biofuels on reduction of CO₂ generation; Basic principles of industrial utilization of raw food materials for production of bio-products. Characterisation of raw material and products for biotechnological conversion; Utilisation of food residues for the production of bio-products including sugars, antibiotics, amino acids, peptides; Bioprocessing for production of drug therapeutics, nutraceuticals and functional foods.

Teaching: The course will be taught intensively over four weeks in the summer, typically 3 days per week as part of the McGill-UWI BITS Programme. Lectures will be given during each of the morning sessions and labs/field trips will be held in the afternoon sessions.

Method of Examination:

Coursework	40%
Final examination (2 hours)	60%

Biol2900 - BIOLOGY EXCHANGE ELECTIVE (3 Credits)

Pre-requisites: Depends on Institution offering course.

Syllabus: This course provides an administrative mechanism for a UWI student on exchange at another approved institution to take an elective course in Biology which has no UWI equivalent. The course content will depend on the specific course delivered at the host institution.

Teaching: Depends on Institution offering course.

Method of Examination: Depends on Institution offering course.

ECOL2460 - ESSENTIALS OF ECOLOGY (3 Credits)

Pre-requisites: BIOL1020 Diversity of Life I AND BIOL1025 Diversity of Life II

Anti-requisite: ECOL2051 Population Ecology

Syllabus: Individuals: Coping with environmental variation. Populations: Life history, population distribution and abundance and population dynamics. Interactions among organisms: Competition, predation and herbivory, parasitism, mutualism and commensalism. Communities: The nature of communities, changes in communities and species diversity in communities. Ecosystems: Production, energy flow and food webs, nutrient supply and cycling.

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	20%
Practical:	30%

ECOL2461 - CARIBBEAN ISLAND BIODIVERSITY (3 Credits)

Pre-requisites: BIOL1020 Diversity of Life I AND BIOL1025 Diversity of Life II

Anti-requisite: ECOL2453 Caribbean Island Biogeography

Syllabus: Plate tectonics and Caribbean island formation. Spatial and temporal climate variability in the Caribbean region. Major terrestrial and freshwater habitat types of the Caribbean. Typical plant and animal communities associated with these habitats. Natural and anthropogenic threats to Caribbean biota. Identification of species in the field using morphological and behavioural characteristics. Basic field survey methodology.

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)	10%
Practical: Field journal/assignments	40%

ECOL2462 - MARINE BIOTA (3 Credits)

Pre-requisites: ECOL2460 Essentials of Ecology

Anti-requisite: ECOL2454 Marine Biology

Syllabus: The abiotic environment. Plankton and productivity. Cephalopods and fish. Adaptations to life in the epipelagic. Marine turtles, mammals and seabirds - diversity, distribution, adaptations for feeding and reproduction, key Caribbean species and conservation status. Life in the deep sea. Tropical coastal communities.

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	20%
Practical: Laboratory/Field Work	30%

ECOL2900 - ECOLOGY EXCHANGE ELECTIVE (3 Credits)

Pre-requisites: Depends on Institution offering course.

Syllabus: This course provides an administrative mechanism for a UWI student on exchange at another approved institution to take an elective course in Ecology which has no UWI equivalent. The course content will depend on the specific course delivered at the host institution.

Teaching: Depends on Institution offering course

Method of Examination:

Depends on Institution offering course

MICR2260 - ESSENTIAL MICROBIOLOGY (3 Credits)

Pre-requisites: BIOL1020 Diversity of Life I AND BIOC1015 Introduction to Biochemistry

Anti-requisite: MICR2251 General Microbiology

Syllabus: An overview of microbial life. Pathways of discovery in microbiology. Microbial systematics. Microscopy. Microorganisms & their natural environments. Impact of microorganisms in human affairs. Cell structure and function. Microbial growth. Microbial control. Microbial diversity. The domain of Bacteria. The domain of Archaea. Laboratory culture of microorganisms.

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	20%
Practical: Reports, Quizzes, Test	30%

MICR2261 - EUKARYOTIC MICROBES (3 Credits)

Pre-requisites: BIOL1020 Diversity of Life I AND BIOC1015 Introduction to Biochemistry

Anti-requisite: MICR2252 Eukaryotic Microorganisms

Syllabus: Phylogeny of eukaryotic microorganisms. Archaeplastida. Protists: structure & functions. Protists: reproduction, behaviour & ecology. Amoebozoa. Excavata. SAR: Stramenopiles. SAR Alveolata. SAR: Rhizaria. Incertae sedis Eukaryota. Fungi: General characteristics. Opisthokonta: Ascomycota Opisthokonta: Basidiomycota. Opisthokonta: Glomeromycota, Mycorrhizae. Opisthokonta: Zygomycota.

Teaching: Eighteen (18) hours of lectures, six (6) hours of tutorials and twenty-four (24) hours of practical/field work).

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	25%
Practical: Laboratory/Field work	25%

MICR2262 - METHODS IN MICROBIOLOGY (3 Credits)

Pre-requisites: MICR2260 Essential Microbiology

NOTE: This course is offered for students Majoring and Minoring in Microbiology. Other students will require permission of the Department.

Syllabus: Best laboratory practice. Aseptic techniques. Levels of biosafety. Lab book preparation. Microbiological media. Sampling methods. Standard methods for microbial identification. Microbial growth. Enumeration/quantification of micro-organisms. Characterization of microbes including antimicrobial sensitivity test. Molecular techniques for microbial identification and characterization. Reporting practical work.

Teaching: Twelve (12) hours of lectures/tutorials; forty-eight (48) hours of practical/field work.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Method of Examination: The course will be assessed by means of 100% coursework as follows:

Practical: Laboratory assessments/Field Work/ Practical skills	80%
Tutorials/In-course Test(s)/Assignment(s)/Report(s)	20%

MICR2900 - MICROBIOLOGY EXCHANGE ELECTIVE (3 Credits)

Pre-requisites: Depends on Institution offering course

Syllabus: This course provides an administrative mechanism for a UWI student on exchange at another approved institution to take an elective course in Microbiology which has no UWI equivalent. The course content will depend on the specific course delivered at the host institution.

Teaching: Depends on Institution offering course.

Method of Examination: Depends on Institution offering course.

LEVEL III BIOLOGICAL SCIENCE COURSES

BIOC3050 - BIOCHEMISTRY OF A CHANGING PLANET (3 Credits)

Pre-requisite: BIOC1015 Introduction to Biochemistry & BIOC2373 Skills for Biologists

Syllabus: The impacts of climate change on nutrient cycling. The effect of warming temperatures on enzymes and proteins (e.g. soil bacteria, photosynthesis and carbon and nitrogen cycling). Biochemical adaptations to climate change- evolution and directed evolution. Production of algal biofuels (e.g. bioethanol, biomethane and biodiesel). Production of microbial biofuels (e.g. methanogens, acetogens and carboxydrophic bacterial biofuel production). Toxic chemical exposure due to climate change. Microbial and enzymatic degradation of plastics. Emerging human and plant diseases and links to climate change. Changes in disease and non-communicable disease (NCD) burdens resulting from climate change.

Teaching: Twenty-four (24) hours of lectures and twelve (12) hours of tutorials.

Method of Examination:

Final Examination (2 hours)	50%
In-course Test(s)	20%
Scientific Communication activity	15%

BIOC3260 - PRINCIPLES OF BIOTECHNOLOGY (3 Credits)

Pre-requisite: BIOC2371 Molecular Techniques

Syllabus: Biotechnology applications to medicine, e.g., animal and human cell, tissue and organ culture. Medical/pharmaceutical products of animal cell culture. Biotechnology applications to agriculture e.g., plant cell and tissue culture. Plant based production of biofuels, molecular markers. Applications of biotechnology to environmental solutions e.g., monitoring, and remediation of contaminated soils. New and emerging biotechnologies e.g., RNAi, CRISPR, gene therapy, and synthetic biology among other new techniques.

Teaching: Eighteen (18) hours of lectures; six (6) hours of tutorials and twenty-four (24) hours of practicals.

Method of Examination:

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	25%
Practical: Reports	25%

BIOC3261 - MITOCHONDRIAL BIOENERGETICS (3 Credits)

Pre-requisites: BIOC2365 Primary Metabolism AND BIOC2371 Molecular Techniques

Syllabus: Definitions of PMF, $\Delta\psi$ and ΔpH . Mitochondrial respiration and its measurement. Proton leak, mitochondrial uncoupling and uncoupling proteins. Types of ROS, production sites and experimental and physiological conditions. ROS detoxification systems and mechanisms. Comparison of bioenergetics of specific cell types. Free radical theory of aging. Mitochondrial diseases: MERRF, Leigh syndrome, PDCD, beta-oxidation defects.

Teaching: Eighteen (18) hours of lectures; six (6) hours of tutorials and twenty-four (24) hours of practicals.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	20%
Practical: Reports	30%

BIOC3265 - PRINCIPLES OF BIOINFORMATICS (3 Credits)

Pre-requisite: BIOC2371 Molecular Techniques

Anti-requisite: BIOL3152 Bioinformatics

Syllabus: Descriptive terminology in Bioinformatics and basic computer programming; Biological algorithms; Pairwise and Multiple sequence alignments; Global and Local sequence alignment; BLAST and FASTA searches; Secondary structure analyses in molecular data e.g. domain and motif searches; Introduction to key software and databases including MEGA, MEME, NCBI, EBI, and DDBJ databases; Phylogenetic and basic cluster analysis methods; Genome projects, e.g. the Human genome; Microbiome and cancer genome projects as well as plant genome projects.

Teaching: Eighteen (18) hours of lectures; six (6) hours of tutorials and twenty-four (24) hours of practicals.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	30%
Practical: Reports	20%

BIOC3290 - BIOCHEMISTRY PROJECT (MINORS) (3 Credits)

Pre-requisites: BIOL2373 Skills for Biologists AND 6 credits from Level II BIOC/BIOL/ECOL/MICR courses. Only available to final year students minoring in Biochemistry.

Anti-requisite: BIOL3901 Multidisciplinary Project, BIOL3990 Biology Project, MICR3990 Microbiology Project, ECOL3990 Ecology Project, BIOC3950 Biochemistry Research Project, BIOL3950 Biology Research Project,

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

MICR3950 Microbiology Research Project, ECOL3950 Ecology Research Project or CHEM 3505 Research Project.

Syllabus: Research question. Summary of scientific literature. Collection of data. Analysis of data. Concise report. Poster presentation. Topics that address real Biochemical questions, whether pure or applied. Research ethics. Suggestions for specific topics may be considered from students but final proposed topics must come from the prospective supervisor and the Department must have the resources to execute the research.

Method of Examination:

Project report	60%
Poster Presentation	25%
Supervisor assessment	15%

BIOC3370 - BASIS OF HUMAN DISEASE (3 Credits)

Pre-requisites: BIOC2371 Molecular Techniques AND BIOC2370 Cell Signals

Anti-requisite: BIOC3354 Biochemistry of Human Disease

Syllabus: Characteristics of the selected diseases/syndromes. Overview of the immune system. Endocrine organs and systems relevant to the selected disease states. Mechanisms of hormones and receptors relevant to the selected disease states. Modulation of hormone levels in healthy and in disease states. System regulators and errors contributing to the disease state. Clinical presentation and progression of the selected diseases/symptoms. The linkage of the symptoms with system errors. Overview of diagnostic tools, drugs and therapies. Disease management. Applications of biochemical techniques used in bio-medical research and forensic sciences.

Teaching: Eighteen (18) hours of lectures; six (6) hours of tutorials and twenty-four (24) hours of practical.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	25%
Practical: Reports	25%

BIOC3990 - BIOCHEMISTRY PROJECT (6 Credits)

Pre-requisites: BIOL2373 Skills for Biologists AND 12 credits from Level II BIOC/BIOL/ECOL/MICR courses. Only available to final year students majoring in Biochemistry.

Anti-requisite: BIOL3901 Multidisciplinary Project, BIOL3990 Biology Project, MICR3990 Microbiology Project, ECOL3990 Ecology Project, BIOC3950 Biochemistry Research Project, BIOL3950 Biology Research Project, MICR3950 Microbiology Research Project, ECOL3950 Ecology Research Project, ENSC3900 Research Project in Environmental Science or CHEM 3505 Research Project

Syllabus: Research question. Review of the scientific literature. Research proposal. Collection of data. Analysis of data. Report and illustrated summary. Oral presentation. Topics that address real Biochemical questions, whether pure or applied. Research ethics. Suggestions for specific topics may be considered from students but

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

final proposed topics must come from the prospective supervisor and the Department must have the resources to execute the research.

Method of Examination:

Project report	70%
Seminar	15%
Supervisor assessment	15%

BIOL3025 - MOLECULAR PLANT PATHOLOGY (3 Credits)

Pre-requisites: BIOC2365 Primary Metabolism OR ECOL2460 Essentials of Ecology OR MICR2260 Essential Microbiology AND SIX credits from Level II BIOC, BIOL, ECOL or MICR courses

Anti-requisite: BIOL3254 Biochemical Plant Pathology,

Syllabus: This course presents an overview of plant diseases and their impact on agriculture. Emphasis is placed on diseases in tropical agriculture. Central themes in plant disease studies including pathogen infection strategies, molecular and biochemical interactions between pathogen and host, disease resistance, epidemiology, disease management, and molecular disease diagnostics are developed during the course.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	25%
Practical: Reports	25%

BIOL3501 - PROFESSIONAL PLACEMENT FOR BIOLOGISTS (3 Credits)

Pre-requisites: BIOL2373 Skills for Biologists and 12 credits from Level II BIOC/BIOL/ECOL/MICR course

Anti-requisite: CHEM3990 Professional placement for Chemists

Syllabus: The course provides a formal internship of 160 hours duration at a relevant private sector, public sector or non-Governmental organisation during which students undertake agreed upon activities relevant to his/her studies in the Biological Sciences. Students will work under the guidance of a workplace supervisor as well as an on-campus supervisor and will submit a report and make a presentation within the Department at the end of the internship. Through exposure to the working environment, students will acquire transferable skills that will be useful in any future employment sphere.

Method of Examination:

Placement Report	50%
Supervisor's Appraisal	35%
Oral Presentation	15%

BIOL3901 - MULTIDISCIPLINARY PROJECT (6 Credits)

Pre-requisite: Permission of Department

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Anti-requisite: BIOC3990 Biochemistry Project, BIOL3990 Biology Project, MICR3990 Microbiology Project, ECOL3990 Ecology Project, BIOC3950 Biochemistry Research Project, BIOL3950 Biology Research Project, MICR3950 Microbiology Research Project, ECOL3950 Ecology Research Project, ENSC3900 Research Project in Environmental Science or CHEM 3505 Research Project

Syllabus: A lab and/or field project carried out under the supervision of a member of staff as part of the McGill UWI BITS Programme. Projects will address real-world problems related to food, nutrition or energy at the local, regional or international level. Development of a hypothesis suitable for investigation. Experimental work to support or refute this hypothesis. Analysis and communication of results obtained.

Teaching: Duration of the course is 14 weeks in the summer period, with approximately 2 days per week devoted to individual project work.

Method of Examination:

Written proposal plus an interim report: 20%

Final report, illustrated summary, poster and oral presentation: 80%

BIOL3990 - BIOLOGY PROJECT (6 Credits)

Pre-requisites: BIOL2373 Skills for Biologists AND 12 credits from Level II BIOC/BIOL/ECOL/MICR courses.

Anti-requisite: BIOL3901 Multidisciplinary Project, BIOC3990 Biochemistry Project, ECOL3990 Ecology Project, MICR3990 Microbiology Project, BIOC3950 Biochemistry Research Project, BIOL3950 Biology Research Project, MICR3950 Microbiology Research Project, ECOL3950 Ecology Research Project, ENSC3900 Research Project in Environmental Science or CHEM 3505 Research Project

Syllabus: Elements of scientific research. Research questions. Research ethics. Review of the scientific literature. Research proposal. Collection of data. Analysis of data. Project report writing. Oral presentation. Selection of a topic that addresses real biological questions, whether pure or applied. Suggestions for specific topics may be considered from students but final proposed topics must come from the prospective supervisor and the Department must have the resources to execute the research.

Method of Examination:

Project report 70%

Seminar 15%

Supervisor assessment 15%

ECOL3100 - STATISTICS FOR ECOLOGISTS (3 Credits)

Pre-requisite: ECOL2460 Essentials of Ecology and BIOL2373 Skills for Biologists

Syllabus: The statistical background: Probability; permutations; populations and samples; descriptive versus inferential statistics; the normal distribution and confidence intervals; null and alternative hypotheses; alpha and beta error; data types. The planning stage: Formulation of ideas; background research; hypothesis formulation; experimental design (e.g., sampling procedures); identification of data needs; identification of relevant statistical tests: Tests for differences (from one to multiple samples), and Tests for linking data. The recording stage: configuration of datasets for analysis. The analysis stage: Data exploration and visualization;

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

hypothesis testing; selection of parametric versus non-parametric statistical tests; evaluation of model fits. The reporting stage: Choice and production of graphics and summary statistic outputs.

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination: The course will be assessed by means of 100% coursework as follows:

Theory	30%
Practical	70%

ECOL3454 - FISHERIES BIOLOGY (3 Credits)

Pre-requisites: ECOL2462 Marine Biota

Syllabus: Trends in fisheries. Marine productivity. Life history, distribution, and population dynamics of exploited species. Data in fisheries management. Stock identity, structure and abundance. Yield prediction modeling. Stock assessment methods. Approaches to fisheries management. Current paradigms in fisheries management.

Teaching: Twenty-four lectures and twenty-four hours of practical/fieldwork per semester.

Method of Examination:

Final Examination (2 hours)	50%
Coursework: In-course tests	20%
Coursework: Lab/field report(s) and assignment(s)	30%

ECOL3460 - BIOLOGY & ECOLOGY OF CORAL REEFS (3 Credits)

Pre-requisites: ECOL2462 Marine Biota

Students must be able to swim and snorkel competently.

Anti-requisite: ECOL3423 Coral reef Ecology

Syllabus: Distribution of coral reefs. Reef types. Reef formation and erosion. Anatomy and morphology of scleractinian corals. Calcification. Coral nutrition and reproduction. Ecology of coral communities, including reef community structure, zonation and dynamics; productivity and nutrient cycling; functional diversity and redundancy in coral reefs; sponge-algae-coral interactions; key trophic interactions; reef resilience and phase shifts. Major taxonomic groups of reef-associated organisms and their ecological function. The value and uses of Caribbean coral reef ecosystems. Threats to Caribbean coral reefs. Current trends in coral reef research.

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

Final Examination (2 hours)	50%
Coursework: Theory	20%
Coursework: Practical	30%

ECOL3461 - ECOLOGY OF A CHANGING PLANET (3 Credits)

Pre-requisites: ECOL2460 Essentials of Ecology

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Anti-requisite: ECOL3451 Human Ecology & Conservation

Syllabus: Human population growth and migration patterns. Impacts of human colonization on biodiversity in previously uninhabited lands. Impacts of conversion of land to agriculture and increased water extraction on biodiversity. Accidental and deliberate introductions of invasive species and their ecological impacts on native biodiversity. Methods to prevent introduction and/or manage invasive terrestrial and marine species. How cultural value systems affect biodiversity use. The role of overexploitation in species declines and the strategies that have been used in species recovery. Location and Protection of biodiversity hotspots. Observed and predicted impacts of climate change on the biology and ecology of terrestrial and marine biodiversity. Conservation goals for the 21st century.

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

Final Examination (2 hours)	60%
Coursework	40%

ECOL3462 - BEHAVIOUR: AN EVOLUTIONARY APPROACH (3 Credits)

Pre-requisites: ECOL2460 Essentials of Ecology

Anti-requisite: ECOL3452 Behavioural Ecology

Syllabus: Observing and measuring behaviour. Behaviour development and expression. Optimal foraging theory. Benefits and costs of sociality. Reproduction and mate choice. Parental investment and parental care. Applications of behavioural ecology to animal husbandry and conservation.

Teaching: Twenty-four lectures/tutorials and twenty-four hours of practical per semester.

Method of Examination:

Final Examination (2 hours)	60%
Coursework	40%

ECOL 3463 - TROPICAL CROP ECOLOGY (3 Credits)

Pre-requisites: ECOL2460 Essentials of Ecology AND BIOL1030 Introduction to Genetics

Anti-requisite: ECOL3453 Crop Ecology

Syllabus: Introduction: Tropical crop production systems and agro-ecosystems; Physical and biological environments of crops; Social constraints to crop production; Conventional vs. Alternative agriculture. Crop evolution, distribution, propagation and breeding of tropical crops. Soil factors; Physical and Chemical properties of soil; Root room; tilth, aeration; pH; Salinity; Tolerance mechanisms; Management under tropical conditions. Mineral nutrition; Deficiency/Toxicity effects; Tolerance mechanisms; Mineral balance of plants and plant communities; Management options in the tropics. Radiation distribution in tropical crops; Photosynthesis & bio-productivity; High and low irradiance tolerance; Carbon balance of crops; Management options. Physiological effects of temperature; Heat tolerance; Energy balance and evapotranspiration; Management options (1 lecture). Crops and water; Water injury (drought/flood); Tolerance mechanisms; Water balance of plants and plant communities; Management options in the tropics. Tropical crop diseases;

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Integrated management. Tropical crop pests; Biological control; Integrated management. Weeds; Integrated management in the tropics. Tropical agroforestry cropping systems. Course Review.

Teaching: Two lectures, one tutorial and three hours of practical per week.

Method of Examination:

Final Examination (2 hours)	60%
Coursework	40%

ECOL3990 - ECOLOGY PROJECT (6 Credits)

Pre-requisites: BIOL2373 Skills for Biologists AND 12 credits from Level II or III ECOL courses. Students with a GPA of 3.00 or above are preferred.

Anti-requisite: BIOL3901 Multidisciplinary Project, BIOL3990 Biology Project, MICR3990 Microbiology Project, BIOC3990 Biochemistry Project, or by persons who have passed BIOC3950 Biochemistry Research Project, BIOL3950 Biology Research Project, MICR3950 Microbiology Research Project, ECOL3950 Ecology Research Project, ENSC3900 Research Project in Environmental Science or CHEM 3505 Research Project.

Syllabus: Elements of scientific research. Research questions. Research ethics. Review of the scientific literature. Research proposal. Collection of data. Analysis of data. Project report writing. Oral presentation. Selection of a topic that addresses real ecological questions, whether pure or applied. Suggestions for specific topics may be considered from students but final proposed topics must come from the prospective supervisor and the Department must have the resources to execute the research.

Method of Examination:

Project report	70%
Seminar	15%
Supervisor assessment	15%

MICR3265 - MICROBIOLOGY OF FOOD (3 Credits)

Pre-requisites: MICR2260 Essential Microbiology, BIOL1020 Diversity of Life I AND BIOC1015 Introduction to Biochemistry

Anti-requisite: MICR3251 Food Microbiology

Syllabus: Microorganisms associated with foods. Factors affecting microbial growth in foods. Food spoilage. Food Preservation. Fermented foods. Food Microbiology and Public Health. Food hazards and food borne illness. Microbial agents of food borne illness. Principle of food safety and management systems. Microbiological quality of foods. Microbiological examination of foods.

Teaching: Twenty-four (24) lectures/tutorials and twenty-four (24) hours of practical per semester.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	20%
Practical: Laboratory/Field work	30%

MICR3266 - ECOLOGY OF MICROORGANISMS (3 Credits)

Pre-requisites: MICR2260 Essential Microbiology AND MICR2261 Eukaryotic Microbes

Anti-requisite: MICR3252 Microbial Ecology

Syllabus: Introduction to microbial ecology. Role of microorganisms in ecology and evolution. Microbial habitats. Methods used in microbial ecology. Microbe-microbe interactions. Microbe-plant interactions. Microbe-animal interactions. Microbial communities. Biogeochemical cycles. Biomineralisation. Microbial weathering. Microbial decomposition of natural compounds. Bioremediation.

Teaching: Eighteen (18) hours of lectures; six (6) hours of tutorials and twenty-four (24) hours of practical/field work.

Method of Examination:

Theory: Final Examination (2 hours)	50%
-------------------------------------	-----

Theory: In-course Test(s)/Assignment(s)	15%
---	-----

Practical: Laboratory/Field work	35%
----------------------------------	-----

MICR3267 - ESSENTIAL VIROLOGY (3 Credits)

Pre-requisites: MICR2260 Essential Microbiology, BIOL1020 Diversity of Life I AND BIOC1015 Introduction to Biochemistry AND BIOL1030 Introduction to Genetics

Anti-requisite: MICR3253 Biology of Viruses.

Syllabus: The nature of viruses, viroids and prions. Structure of viruses. The Baltimore classification scheme. Entry and exit of viruses from host cells. Virus replication strategies. Viral pathogenesis. Viral oncogenesis. Evolution of viruses: new and re-emerging viruses. Control of virus infections: vaccination, antiviral drugs, interferon. Plant viruses: disease symptoms, control measures. Beneficial viruses: gene therapy, bacteriophage therapy, oncolytic. Viruses. Laboratory techniques used in the study, detection and identification of viruses.

Teaching: Twenty-four (24) hours of lectures/tutorials; Twenty-four (24) hours of practical.

Method of Examination:

Theory: Final Examination (2 hours)	50%
-------------------------------------	-----

Theory: In-course Test(s)/Assignment(s)	25%
---	-----

Practical assignment(s)	25%
-------------------------	-----

MICR3268 - MICROBIAL PATHOGENESIS (3 Credits)

Pre-requisites: MICR2260 Essential Microbiology, BIOL1020 Diversity of Life I AND BIOC1015 Introduction to Biochemistry AND BIOL1030 Introduction to Genetics

Anti-requisite: MICR3258 Pathogenic Microorganisms

Syllabus: Introduction to the concept of pathogenicity. Normal microbial flora of the human body. Establishment of infectious disease. Immune response to microbial infection. Spread of pathogens within the host. The damage-response framework. Pathogenesis and virulence. Pathogen survival within the human host. Specific infectious diseases by body system. Opportunistic infections. Identification of pathogenic

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

microbes and laboratory diagnosis of infectious disease. Control of infectious diseases: antimicrobial chemotherapy and vaccination. Antimicrobial resistance.

Teaching: Twenty-four (24) hours of lectures/tutorials; Twenty-four (24) hours of practical.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	35%
Practical: Assignment(s)	15%

MICR3990 - MICROBIOLOGY PROJECT (6 Credits)

Pre-requisites: MICR2260 Essential Microbiology, MICR2262 Methods in Microbiology, BIOL2373 Skills for Biologists AND 9 credits from Level II BIOC/BIOL/ECOL/MICR courses. Only available to final year students majoring in Microbiology.

Anti-requisite: BIOL3901 Multidisciplinary Project, BIOL3990 Biology Project, ECOL3990 Ecology Project, MICR3990 Microbiology Project, BIOC3990 Biochemistry Project, BIOC3950 Biochemistry Research Project, BIOL3950 Biology Research Project, ECOL3950 Ecology Research Project, ENSC3900 Research Project in Environmental Science or CHEM 3505 Research Project.

Syllabus: Research question. Research ethics. Review of the scientific literature. Research proposal. Collection of data. Analysis of data. Report and illustrated summary. Oral presentation. Topics that address real Microbiological questions, whether pure or applied. Suggestions for specific topics may be considered from students but final proposed topics must come from the prospective supervisor and the Department must have the resources to execute the research.

Method of Examination:

Project report	70%
Seminar	15%
Supervisor assessment	15%

CHEMICAL SCIENCE COURSES

PRELIMINARY CHEMISTRY COURSES

CHEM0615 - PRELIM CHEMISTRY I (6 Credits)

Pre-requisite: None

Anti-requisite: CHEM0615 Preliminary Chemistry I, CHEM0355 Preliminary Chemistry A or CAPE Chemistry Unit 1.

Syllabus: This course familiarizes students with the fundamental concepts of chemistry such as the mole concept, chemical equations, atomic structure, periodicity and interactions between molecules. It introduces them to the basic concepts of physical chemistry such as gases, thermochemistry, equilibria, kinetic and electrochemistry. A course of about 48 lectures, associated tutorials and a maximum of 39 hours of laboratory work on Inorganic and Physical Chemistry. Atomic Theory. Forces of Attraction. Periodicity. Mole Concept. Kinetic Theory. Energetics. Equilibrium. Rates of Reaction. Electrochemistry.

Teaching: Four lectures, one tutorial and three hours of practical work per week.

Method of Examination:

Theory: Final Examination (3 hours)	60%
Theory: In-course Test(s)/Assignment(s)	20%
Laboratory Exercises	20%

CHEM0625 - PRELIM CHEMISTRY II (6 Credits)

Pre-requisite: None

Anti-requisite: CHEM0625 Preliminary Chemistry II, CHEM0125 Preliminary Chemistry B or CAPE Chemistry Unit 2.

Syllabus: A course of about 48 lectures, associated tutorials and a maximum of 39 hours of laboratory work on Organic Chemistry and Analytical Chemistry. This course introduces students to the basic concepts of organic and analytical chemistry as well as familiarizes students with the basic industrial and environmental applications of chemistry. It stands as an alternative to CAPE Chemistry Unit 2 and will be delivered in a face-to-face modality. Structure, formulae and nomenclature of organic compounds. Introduction to reaction mechanisms. Functional groups and their reactions. Analytical techniques and associated calculations. Petroleum industry. Haber & Contact processes. Aluminium industry. Preparation of chlorine. Environmental impact of selected industries and pollutants. Green Chemistry and waste reduction.

Teaching: Four lectures, one tutorial and three hours of practical work per week.

Method of Examination:

Theory: Final Examination (3 hours)	60%
Theory: In-course Test(s)/Assignment(s)	20%
Laboratory Exercises	20%

LEVEL I CHEMISTRY COURSES

CHEM1110 - INTRODUCTION TO ORGANIC CHEMISTRY (3 Credits)

Pre-requisites: CHEM0615 and CHEM0625; or CAPE CHEMISTRY UNITS 1 and 2; or EQUIVALENT

Syllabus: This course covers the basic and fundamental principles of organic chemistry and exposes students to the concepts of chemical bonding in organic molecules, functional groups, nomenclature, stereochemistry and reaction mechanisms. Electron pushing formalism will be emphasized in an attempt to discourage rote learning and to allow students to better understand the language of organic chemistry. Students will be expected to apply their knowledge to interpret reactions based on their patterns of reactivity and hence predict and explain unknown reactions.

Teaching: Two one-hour lectures and a one-hour tutorial per week.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	50%

CHEM1120 - INTRODUCTION TO PHYSICAL CHEMISTRY (3 Credits)

Pre-requisites: CHEM0615 and CHEM0625; or CAPE CHEMISTRY UNITS 1 and 2; or EQUIVALENT

Syllabus: This course seeks to provide students with knowledge of the fundamental principles of physical chemistry with an emphasis on thermodynamics, energetics, chemical kinetics, electrochemistry and the fundamentals of spectroscopy. The aim is to provide 1st year (i.e., fully matriculated) students with a theoretical foundation for the more advanced and specialised 2nd and 3rd year physical chemistry courses.

Teaching: Two one-hour lectures and a one-hour tutorial per week.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	50%

CHEM1125 - INTRODUCTION TO EXPERIMENTAL CHEMISTRY (3 Credits)

Pre-requisites: CHEM0615 and CHEM0625; or CAPE CHEMISTRY UNITS 1 and 2; or EQUIVALENT

Syllabus: This course is a yearlong 3-credit experimental chemistry course with 84 hours of experimental work in which students are exposed to concepts and laboratory skills associated with Organic, Inorganic, Analytical and Physical Chemistry. Students will hone their critical thinking and analytical skills through a series of discussions and experiments designed to improve experimental skills and prepare them for more advanced laboratory techniques.

Teaching: Seven-six (76) hours for practical skills and eight (8) hours for data analysis skill set.

Method of Examination:

Coursework:	100%
-------------	------

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

CHEM1130 - INTRODUCTION TO INORGANIC CHEMISTRY (3 Credits)

Pre-requisites: CHEM0615 and CHEM0625; or CAPE CHEMISTRY UNITS 1 and 2; or EQUIVALENT

Syllabus: This course seeks to equip biological and chemical sciences students with knowledge of the fundamental principles of inorganic chemistry including atomic and molecular structures and properties, the chemistry of the main group and transition elements, including industrial and commercial applications, coordination compounds and the packing arrangements of ionic structures. These areas will be used as the basis for advanced inorganic chemistry courses required for the major/minor in chemistry.

Teaching: Two one-hour lectures and a one-hour tutorial per week.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	50%

LEVEL II CHEMISTRY COURSES

CHEM2406 – FOOD CHEMISTRY (3 credits)

Pre-requisite: CHEM1125 Introduction to Experimental Chemistry

Syllabus: Chemistry of water and its role in food systems. Carbohydrates: structure, function, reactions, and impact on food quality. Proteins: structure, function, denaturation, and role in food functionality. Lipids: structure, classification, reactions, and their influence on food texture and quality. Food Colours: pigments, browning reactions, and their impact on visual appeal. Flavour and Aroma: chemical basis of taste and odour perception in foods. Food additives and preservatives: chemistry and function. Chemical changes during food processing (e.g., cooking, baking). Food safety and quality control: chemical methods for analysis and detection. Introduction to food analysis techniques e.g. chromatography, spectroscopy.

Teaching: Twenty-four (24) hours of lectures and twelve (12) hours of practicals/field trips.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	25%
Practical: Laboratory reports/Field Trip journal	25%

CHEM2513 – FUNDAMENTALS OF TEACHING CHEMISTRY (3 credits)

Pre-requisite: CHEM1110 Introduction to Organic Chemistry, CHEM1130 Introduction to Inorganic Chemistry, CHEM1125 Introduction to Experimental Chemistry, AND CHEM1120 Introduction to Physical Chemistry

Syllabus: This course seeks to expose Chemistry students, who are interested in becoming teachers, to the skills of teaching Chemistry/Science, how learning occurs as well as how to overcome some of the barriers to learning. In the process participants will further develop their critical thinking, analytical and communication skills. They will be exposed to best practice relating to scientific literacy, an inquiry-based approach to Chemistry/Science as well as various teaching strategies to engage active and hence deep learning. Participants will also engage in lesson planning and microteaching.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Teaching: Three (3) teaching hours per week.

Method of Examination:

Coursework	100%
------------	------

CHEM2700 – INTERMEDIATE INORGANIC CHEMISTRY (3 Credits)

Pre-requisites: CHEM1125 Introduction to Experimental Chemistry AND CHEM1130 Introduction to Inorganic Chemistry

Syllabus: This course seeks to build on the fundamental Inorganic Chemistry knowledge that the students were exposed to in their first year by, amongst others, introducing the transition metals and their utility in industry related to their chemical and physical properties. The students are also exposed to spectroscopic and magnetochemical analysis used in the characterization of transition metal complexes.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	50%

CHEM2705 - INTERMEDIATE ORGANIC CHEMISTRY (3 Credits)

Pre-requisites: CHEM1110 Introduction to Organic Chemistry AND CHEM1125 Introduction to Experimental Chemistry

Syllabus: This course introduces students to the utilization of spectroscopic techniques in elucidating the structure of organic molecules, advanced organic stereochemistry, properties of aromatic molecules, electrophilic aromatic substitution, enolate chemistry, and several other reaction classes. They will learn how to predict the expected outcome of reactions, craft reaction mechanisms and determine the structure of organic molecules while reinforcing concepts learnt, and skills cultivated in the first year Organic Chemistry course.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	50%

CHEM2710 - INTERMEDIATE PHYSICAL CHEMISTRY (3 Credits)

Pre-requisites: CHEM1120 Introduction to Physical Chemistry AND CHEM1125 Introduction to Experimental Chemistry

Syllabus: This course looks at the thermodynamics, adsorption processes at solid surfaces as well as electrochemistry and aims to build on the physical chemistry fundamental knowledge that the students were exposed to in their first year. This course would help to deepen the students' understanding of the microscopic and macroscopic behaviour of matter.

Teaching: Two (2) lectures and one (1) tutorial per week.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	50%

CHEM2715 - LABORATORY METHODS IN CHEMISTRY I (3 credits)

Pre-requisites: CHEM1110 Introduction to Organic Chemistry, CHEM1125 Introduction to Experimental Chemistry AND CHEM1130 Introduction to Inorganic Chemistry

Syllabus: A course of seventy-two (72) hours of practical work selected from the disciplines of Analytical Chemistry, Environmental Chemistry, Inorganic Chemistry, Organic Chemistry and Physical Chemistry.

Teaching: Six (6) hours of practical classes per week.

Method of Examination:

Practical work	60%
In-course Test(s)/Assignment(s)	40%

CHEM2720 - LABORATORY METHODS IN CHEMISTRY II (3 credits)

Pre-requisites: CHEM1125 Introduction to Experimental Chemistry

Syllabus: A course of seventy-two (72) hours of practical work selected from the disciplines of Analytical Chemistry, Environmental Chemistry, Inorganic Chemistry, Organic Chemistry and Physical Chemistry.

Teaching: Six (6) hours of practical classes per week.

Method of Examination:

Practical work	60%
In-course Test(s)/Assignment(s)	40%

CHEM2725 - CHEMISTRY OF THE ENVIRONMENT (3 Credits)

Pre-requisites: CHEM1125 Introduction to Experimental Chemistry

Anti-requisite: CHEM3515 Environmental Chemistry.

Syllabus: An understanding of the fundamental chemical processes in the environment is critical to understanding the world in which we live and our impact on it. Students will develop knowledge and skills that will allow them to contribute to regional needs related to air, water and soil quality. The course will provide invaluable practice in problem solving, calculations, balancing of equations and units that will assist in other areas of chemistry, laboratory skills and environmental science. This course is prerequisite for CHEM3218 Environmental Toxicology and Chemistry which can be used to complete the major in Chemistry with both courses being required for the double major in Chemistry and being elective courses that contribute to the major/minor in Environmental Science.

Teaching: Three (3) interactive lectures/tutorials per week.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	50%

CHEM2730 - QUANTITATIVE CHEMICAL ANALYSIS (3 Credits)

Pre-requisites: CHEM1120 Introduction to Physical Chemistry AND CHEM1125 Introduction to Experimental Chemistry

Syllabus: This course intends to build the foundations of good analytical laboratory practices by introducing the statistical methods applicable to analytical measurements, sampling techniques and methodology. The course discusses the instrumental methods of analysis including basic instrumentation and principles of spectroscopic methods viz. UV/Visible spectroscopy, fundamentals of Atomic Absorption Spectroscopy and Atomic Emission Spectroscopy. The course also looks at the use of electrochemical methods and chromatographic methods (GC, HPLC) for quantitative chemical analysis.

Teaching: Two (2) lectures and one (1) tutorial per week

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	50%

CHEM2950 - CHEMISTRY ELECTIVE (3 Credits)

Pre-requisites: Depends on Institution offering course

Syllabus: An advanced course in Chemistry taken as an exchange student at an approved institution and pre-approved by the Dean.

Teaching: Depends on Institution offering course.

Method of Examination: Depends on Institution offering course.

LEVEL III CHEMISTRY COURSES

CHEM3167 – ADVANCED INORGANIC CHEMISTRY (3 Credits)

Pre-requisites: CHEM2700 Intermediate Inorganic Chemistry

Anti-requisite: CHEM3100 Inorganic Chemistry II.

Syllabus: This final year inorganic chemistry course covers topics in the applications of group theory to problems in bonding and spectroscopy, the application of physical techniques used to study inorganic systems and the organometallic chemistry of main group and transition elements. It is directed at students at the advanced level of learning and will build on knowledge gained in the prerequisite course(s). It will provide students with a good foundation for graduate work in the fields of inorganic/metalloorganic and materials chemistry.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	50%

CHEM3175 – ADVANCED ORGANIC CHEMISTRY (3 Credits)

Pre-requisites: CHEM2705 Intermediate Organic Chemistry

Anti-requisite: CHEM3200 Organic Chemistry II.

Syllabus: This level III course of 24 lecture hours and associated tutorials emphasizes the importance of organic reaction mechanisms, giving special emphasis to the techniques used in the elucidation of a reaction pathway. It is further supplemented by an investigation into the properties of key organic reaction intermediates, an introduction to the principles of synthetic strategy and retrosynthetic analysis, in addition to a presentation of the essential classes of pericyclic reactions. Case studies taken from synthetic journal articles will be used to highlight the utility of particular reactions in the synthesis of important natural products and drug targets.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Final Examination (2 hours)	50%
In-course test(s)/Assignment(s)	50%

CHEM3218 – ENVIRONMENTAL CHEMISTRY AND TOXICOLOGY (3 Credits)

Pre-requisites: CHEM2725 Chemistry of the Environment

Syllabus: This course explores the analysis and impact of pollutants in the environment with a focus on their toxicological effects on organisms including man. Fundamental concepts in environmental chemistry and toxicology will be reviewed and applied to a variety of chemicals/environmental issues, such as toxic metals, persistent organic pollutants, emerging chemicals of concern, as well as environmental forensics. This course can be used to complete the major in Chemistry, is required for the double major in Chemistry and can be used as an elective course in Environmental Science.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Final Examination (2 hours)	50%
In-course test(s)/Assignment(s)	50%

CHEM3620 - ADVANCED PHYSICAL CHEMISTRY (3 Credits)

Pre-requisites: CHEM2710 Intermediate Physical Chemistry

Anti-requisite: CHEM3300 Physical Chemistry II.

Syllabus: This elective addresses topics in statistical thermodynamics, and quantum mechanics and intermolecular forces. This course requires a solid foundation in basic mathematics, as well as calculus. The aim of this course is to build on the foundations laid by the first-year Introductory Physical Chemistry course and the second-year Intermediate Physical Chemistry course in order to deepen students' understanding of the behaviour of matter at the macroscopic level. It is an elective for students pursuing a Major in Chemistry. It is applicable to students who wish to enhance their understanding of physical chemistry.

Teaching: Two (2) lectures and one (1) tutorial per week.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	50%

CHEM3625 – LABORATORY METHODS IN CHEMISTRY III (3 Credits)

Pre-requisites: CHEM2715 Laboratory Methods in Chemistry I AND CHEM2720 Laboratory Methods in Chemistry II

Syllabus: This laboratory course is one in which final year students in Chemistry are exposed to concepts and techniques associated with, but not limited to Analytical, Bioinorganic, Bioorganic/Medicinal, Environmental, Inorganic, Organic, and Physical Chemistry. This course primarily seeks to further build on practical theory and techniques acquired during Level II and will equip students with advanced chemistry practical skills. It also seeks to reinforce the principles of laboratory safety that will place the students in good stead for graduate work or future careers. This laboratory experience provides opportunities for learners to develop their skills in making observations, taking measurements, designing experiments, communicating their data, results and conclusions, improving their scientific, information, numeracy and general literacy skills. The course comprises a series of experiments designed to illustrate important preparative reactions, characterization and analytical techniques.

Teaching: Six (6) practical hours per week.

Method of Examination:

Coursework	100%
------------	------

CHEM3630 – METHODS IN INSTRUMENTAL ANALYSIS (3 Credits)

Pre-requisites: CHEM2730 Quantitative Chemical Analysis

Anti-requisite: CHEM3415 Analytical Chemistry III

Syllabus: This course focuses on the implementation of advanced instrumental techniques and their applications in analytical chemistry. It discusses the instrumental techniques and method development of analysis including chromatographic methods Gas Chromatography (GC), High Performance Liquid Chromatography (HPLC), and electrophoresis. The operating principles and practices of some of the more chemically important instruments, such as FTIR and Mass spectrometers will also be discussed. Students will engage in problem-based activities that will help to develop their skills in the use and interpretation of statistical data using typical analytical methods: calibration curves, weighted and unweighted regression lines and ANOVA. Detailed descriptions of the electro-analytical techniques such as cyclic voltammetry and polarography are also included.

Teaching: Eighteen (18) lecture hours, six (6) tutorial hours and twenty-four (24) laboratory hours per semester.

Method of Examination:

Final Examination (2 hours)	50%
In-course test(s)/Assignment(s)	25%

Practical	25%
-----------	-----

CHEM3635 – BIOLOGICAL INORGANIC CHEMISTRY (3 Credits)

Pre-requisites: CHEM2700 Intermediate Inorganic Chemistry

Anti-requisite: CHEM3135 Bioinorganic Chemistry.

Syllabus: This course is intended for final year chemistry and biochemistry students who wish to cement their knowledge regarding the chemistry of biological molecules. The course will provide students with a general overview of the many fundamental tasks performed by inorganic elements in living organisms as well as the related methods and theories. It focuses on the application of principles of inorganic chemistry to the understanding of biological function at the molecular level. Topics covered include spectroscopic methods in chemical biology, metal ion acquisition & speciation in biological systems, metalloenzymes in metabolism and synthesis, role of metals in diseased states and metal containing pharmaceuticals.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Theory: Final Examination (2 hours)	50%
-------------------------------------	-----

Theory: In-course Test(s)/Assignment(s)	50%
---	-----

CHEM3800 – NANOSTRUCTURES AND SUPRAMOLECULAR CHEMISTRY (3 Credits)

Pre-requisites: CHEM2700 Intermediate Inorganic Chemistry AND CHEM2705 Intermediate Organic Chemistry

Syllabus: This course is intended for final year chemistry and biochemistry students and develops the concepts of supramolecular chemistry (both organic and metal-based systems) and its applications. The course will focus on the general basic and theoretical background of supramolecular chemistry concepts and terminology, and on key intermolecular interactions; supramolecular chemistry of living organisms illustrated using representative natural systems; analytical methods, utilized in supramolecular chemistry and concepts of supramolecular design.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Final Examination (2 hours)	50%
-----------------------------	-----

In-course test(s)/Assignment(s)	50%
---------------------------------	-----

CHEM3950 – BASIC PROJECT IN CHEMISTRY (3 Credits)

Pre-requisites: CHEM2700 Intermediate Inorganic Chemistry AND CHEM2705 Intermediate Organic Chemistry AND CHEM2710 Intermediate Physical Chemistry AND CHEM2730 Quantitative Chemical Analysis AND CHEM2715 Laboratory Methods in Chemistry I AND CHEM2720 Laboratory Methods in Chemistry II

For chemistry majors only or with permission of the Department

Anti-requisite: CHEM3500 Chemistry Project or CHEM3955 Research Project in Chemistry.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Syllabus: This course consists of a one-semester research project for students pursuing a Chemistry Major, carried out under the supervision of a member of staff. It is meant to provide the necessary training and skill development in the different areas of chemistry and comprises at least sixty-six (66) hours of laboratory and/or computational work, and six (6) hours of orientation workshops, including library session (literature search), scientific report (word processing, Excel) and presentation (Power Point) preparation.

Method of Examination:

Supervisor's Assessment	30%
Seminar	15%
Project Report	55%

CHEM3955 - RESEARCH PROJECT IN CHEMISTRY (6 Credits)

Pre-requisites: CHEM2700 Intermediate Inorganic Chemistry AND CHEM2705 Intermediate Organic Chemistry AND CHEM2710 Intermediate Physical Chemistry AND CHEM2730 Quantitative Chemical Analysis AND CHEM2715 Laboratory Methods in Chemistry I AND CHEM2720 Laboratory Methods in Chemistry II

For Chemistry Double Majors only or with permission of the Department.

Anti-requisite: CHEM3505 Chemistry Research Project, CHEM3950 Basic Project in Chemistry, BIOC3990 Biochemistry Project, BIOL3990 Biology Project, ECOL3990 Ecology Project, MICR3990 Microbiology Project or ENSC3900 Research Project in Environmental Science.

Syllabus: This course consists of a yearlong research project for students pursuing a chemistry double major under the supervision of a member of staff. It is meant to provide the necessary training and skill development in the different areas of chemistry and comprises at least 138 hours of laboratory and/or computational work, and six (6) hours of orientation workshops, including library session (literature search), scientific report (word processing, Excel) and presentation (Power Point) preparation.

Method of Examination:

Supervisor's Assessment	15%
Seminar	15%
Project Report	70%

CHEM3990 – PROFESSIONAL PLACEMENT FOR CHEMISTS (3 Credits)

Pre-requisites: CHEM2700 Intermediate Inorganic Chemistry Intermediate Physical Chemistry AND CHEM2730 Quantitative Chemical Analysis AND CHEM2715 Laboratory Methods in Chemistry I AND CHEM2720 Laboratory Methods in Chemistry II

Syllabus: The course provides a formal internship of at least 4 weeks (160 hours) duration at a private sector, public sector or non- Governmental organisation during which students undertake agreed upon activities relevant to his/her studies. They will work under the guidance of a workplace supervisor as well as an on-campus supervisor and will submit a report and make a presentation at the end of the internship. Through exposure to the working environment, students will acquire transferable skills that will be useful in any future employment sphere.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Method of Examination:

Placement Report	50%
Supervisor's Appraisal	35%
Oral Presentation	15%

CHEM3992 – SPECIAL TOPICS IN PHYSICAL CHEMISTRY (3 Credits)

Pre-requisites: CHEM2710 Intermediate Physical Chemistry OR CHEM2300 Physical Chemistry I OR CHEM2315 Physical Chemistry II

Anti-requisite: CHEM3300 Physical Chemistry II.

Syllabus: This course addresses topics in advanced spectroscopy and fundamental theoretical aspects of quantum mechanics, with a brief introduction to intermolecular forces. This course requires a solid foundation in basic mathematics, as well as the calculus. The aim of this course is to build on the foundations laid by the first-year Introductory Physical Chemistry course and the second-year Intermediate Physical Chemistry in order to deepen students' understanding of the behaviour of matter at the microscopic level. It is an elective for students pursuing a major in Chemistry. It is applicable to students who wish to enhance their understanding of the fundamental principles underlying much of Chemistry.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Final Examination (2 hours)	50%
In-course Test(s)/Assignment(s)	50%

ENVIRONMENTAL SCIENCE COURSES

LEVEL I ENVIRONMENTAL SCIENCE COURSES

ENSC1000 - EARTH AND ITS ENVIRONMENT (3 Credits)

Pre-requisites: Any two CAPE science subjects (Units I & II) approved by the Faculty, or an equivalent approved Associate Degree with a minimum GPA of 2.5, or the equivalent Preliminary courses in Physics, Mathematics, Biology or Chemistry

Syllabus: This course facilitates students' access to geographical knowledge of the world, including physical features such as the location of continents, countries, oceans and oceanic currents, mountains, deserts, seas, human population. Cartography and map analysis sessions will be used to visualize specific features of the Earth system. The course intends to train students to interpret and look at the Earth System as a holistic system to understand the connections between its different elements.

Teaching: Two (2) hours of lectures and two (2) hours of practical class every week.

Method of Examination:

Assignment (s)	80%
In-course test	20%

ENSC1005 - LANDFORM DYNAMICS (3 Credits)

Pre-requisites: None

Syllabus: This course introduces physical Earth from the perspective of landform-process interactions (i.e., geomorphology) including the study of the solid earth, its structure, composition, and the internal and surface processes that combine to form the physical landscape upon which we live. The driving forces behind these processes are plate tectonics (a "unifying theory" in the geosciences) and rock decay science that, together, explain most phenomena observed on and under Earth's surface. The course also examines influence/interactions at Earth's "Critical Zone", and how this research has been crucial in developing an understanding of the Earth. The Critical Zone represents a burgeoning and important topic in both the environmental and Earth sciences. At a more local level, the role physical geography plays in the formation and development of Barbados and the Lesser Antilles will be also studied.

Teaching: Two (2) hours of lecture/tutorial per week, and two (2) of practical class every week.

Method of Examination: The course will be assessed by means of 100% coursework as follows:

In class/online quizzes, course work, test(s)/assignment(s)	50%
Practical session activities and exercises	50%

LEVEL II ENVIRONMENTAL SCIENCE COURSES

ENSC2000 - ESSENTIALS OF OCEANOGRAPHY (3 Credits)

Pre-requisites: METE1110 Introduction to Ocean and Climate (OR ENSC1000 Earth and its Environment OR METE1200 Oceans and Climate)

Syllabus: Oceanography is the scientific study of all aspects of the marine environment. This course is designed to provide a working knowledge of important ocean processes by integrating relevant aspects of physical, chemical and biological oceanography. It will provide the student with tools to assess information on the major geographic features of the ocean basins and their origin, the chemistry of the ocean and its role in regulating climate and productivity, the origins and dynamics of wind waves, tsunamis, tides and coastal processes, and marine pollution problems. The lectures/tutorials will focus on the description and explanation of the ocean as an integrated system, whilst wet and dry practical sessions (including field exercises) will deal with application to working scenarios to underpin the theory provided. Laboratory exercises will emphasize problem solving, and data analysis and interpretation, leading to a working knowledge of oceanographic processes.

Teaching: Twenty-four (24) hours of lectures/tutorials; twenty-four (24) hours of practical exercises/fieldwork.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	20%
Practical/field work	30%

ENSC2002 - EARTH'S CLIMATE (3 Credits)

Pre-requisites: ENSC1000 Earth and its Environment (OR METE1110 Introduction to Ocean and Climate OR METE1200 Oceans and Climate)

Syllabus: This course provides a detailed description of the earth's climate from seasonal to annual time scales based on a geographical approach. The global distribution of climate parameters and their fluctuation through the year are explained in detail in conjunction with the sun-earth relationship, atmospheric and oceanic global circulation, latitudinal and longitudinal effects, and topography. The topics cover the seasonal cycle of temperature and rainfall and the atmospheric and oceanic circulation at global and regional scales. The course also points out the interrelations between the different components of the earth's system, and explains the different mechanisms involved in the climate system. The regional climate and their classification will be presented with an introduction of the Caribbean climate. The students will be assessed on their ability to relate the different climate parameters and to explain why such a climate is observed in a given area. This course is part of the minor in Environmental Science and will also benefit students in Ecology and Meteorology.

Teaching: Twenty-four (24) hours of interactive lecture/tutorials.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	20%

Practical: Lab tests	30%
----------------------	-----

ENSC2003 - SUSTAINABLE ENERGY SYSTEMS (3 Credits)

Pre-requisites: Fifteen (15) Level 1 Faculty of Science & Technology (FST) credits

Syllabus: This course is an elective on the Environmental Science minor and will provide an opportunity for students to gain an understanding of the wider implications of human interaction with our environment. This course will first explain how societies traditionally source their energy for electricity production and the impact that this is having on our environment, before providing an introduction to sustainable energy resources and the technologies that can be used to take advantage of them. At the heart of this course is a look at how a Caribbean small island state can transition from an energy system dominated by fossil fuels, towards one that is based on 100% clean, economically viable, indigenous sustainable energy sources. The subject matter for this course is interdisciplinary in nature and has been designed for all FST students. It is recommended to those students interested in pursuing careers/further study in the expanding field of sustainable energy systems.

Teaching: Twenty-four (24) lectures/tutorials and twenty-four (24) hours of practical work.

Method of Examination:

Theory: Final Examination (2 hours)	50%
In-course test(s):	25%
Laboratory report:	10%
Group presentation:	10%
Online discussion forum and field trip reports:	5%

ENSC2005 - EARTH LIFE CYCLES (3 Credits)

Pre-requisites: ENSC1000 Earth and Its Environment (OR METE 1110 Introduction to Oceans and Climate) AND ENSC1005 Landform Dynamics (OR ENSC1001 An Introduction to Physical Geology: Dynamic Earth).

Syllabus: This course provides a more integrated approach to the environment at the landscape-scale. The course begins with a brief overview of Earth's "Five Spheres" (i.e., Atmosphere, Biosphere, Hydrosphere, Lithosphere, and Pedosphere) and basic elemental cycling within them (i.e., C, H, O, P, S, N). Students are also introduced to major Earth-Life events such as mass extinctions and the rise of mammals, as well as how the cycles have changed/adapted through time and how they influence/interact with rock decay and soils, and what that means in terms of basic and more advanced lifeforms: from Earth's first cyanobacteria, lichens, algae, and mosses to later development of vascular plants, animals, and their subsequent/inevitable rises and (potential) extinctions. These topics, linked together by environmental changes in the landscape, include a focus on the "Anthropocene" and "Critical Zone" via current (and past) scientific modelling efforts. Lectures will explain Earth-Life connections and adaptations in terms of basic elements' roles and differing scientific theories, paradigms, and models. Assignments will focus on problem solving and analysis of both primary and secondary data, including those gathered from various field trips throughout the semester.

Teaching: Thirty-six (36) hours lecture/tutorial and twelve (12) hours practical/fieldtrips

Method of Examination:

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Theory: Final Examination (2 hours)	30%
Theory: In-course Test(s)/Assignment(s)	5%
Practical: Field trip write-ups & presentations	65%

ENSC2900 - ENVIRONMENTAL SCIENCE EXCHANGE (3 credits)

Pre-requisites: Depends on Institution offering course.

Syllabus: This course enables UWI students on exchange at another institution to take an elective course in Environmental Science for which there is no UWI equivalent. This course differs from all other courses the UWI student will take at the exchange institution for which there are equivalent UWI courses.

Teaching: Depends on Institution offering course.

Method of Examination: Depends on Institution offering course.

LEVEL III ENVIRONMENTAL SCIENCE COURSES

ENSC3000 - CLIMATE VARIATION AND CHANGE (3 Credits)

Pre-requisites: ENSC2002 Earth's Climate

Syllabus: Climate variations have always influenced the geographical location of flora and fauna and the settlement of the populations on Earth. The recent observed warming of the earth represents a "real time" example of these interactions. Therefore, this course provides physical explanations on how and why the climate has varied since the last 400 000 years with an emphasis on the Holocene period and the post-industrial period. The course will provide the students with keys and tools to assess the past, present and future climate variations. Hence the role of the radiative forcing, feedback and physical processes in the variations of the climate at global and regional scale will be demonstrated. The impact of the climate variation on the environment will be also demonstrated. The last part of the course focuses the Caribbean climate. The impacts of the climate change on the environment are studied in this course. The lectures will focus on the description and explanation of the processes involved in climate's variations while the practical sessions will provide the tools to analyse and interpret such variations.

Teaching: Twenty-four (24) lectures/tutorials, and twelve (12) 2-hour practical sessions.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	20%
Practical: Lab test and/or report	30%

ENSC3001 - NATURAL HAZARDS AND DISASTERS (3 Credits)

Pre-requisites: ENSC1001: An Introduction to Physical Geology: Dynamic Earth OR ENSC1005 Landform AND ENSC2000 Essentials of Oceanography OR ENCS2002 Earth's Climate.

Syllabus: Natural disasters of one form or another occur almost daily, and such events can be extremely costly both in human lives and financial terms. The islands of the Caribbean are vulnerable to a variety of natural

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

hazards due to a combination of their tropical climate and geographical location. This course builds on the knowledge acquired from ENSC1001 An Introduction to Physical Geology: Dynamic Earth and ENSC2002 Earth's Climate in order to explain the physical processes that lead to natural disasters, the impact of those disasters on communities and the ways in which the risks of such disasters can be reduced.

Teaching: Twenty-four (24) lectures and twelve (12) tutorials.

Method of Examination:

Theory: Final Examination (3 hours)	50%
Theory: In-course Test(s)/Assignment(s)	50%

ENSC3005 - URBAN GEOMORPHOLOGY (3 Credits)

Pre-requisite: ENSC2005 Earth Life Cycles

Syllabus: This course centres on the human-environment concept of Urban Geomorphology (landforms and processes in cities), which combines aspects of the built environment and geomorphic principles (including paleoenvironments). The course has a specific focus on small island developing nations and the Lesser Antilles in particular, bringing the concepts close to home for students. It does not focus solely on large cities, but anywhere the built environment encroaches on the natural environment: from golf courses and landfills to tourist areas and housing developments. Assessments for this course include flipped classroom activities (e.g., student-led discussions), primary data analysis activities utilizing historic repeat imagery analysis, and a final exam.

Teaching: Twenty-four (24) hours lecture and/or tutorial and twenty-four (24) hours practical

Method of Examination:

Theory: Discussion Leading:	30%
Practical: In-class assessments based on gathered fieldwork:	40%
Theory: Final Examination:	30%

ENSC3020 - CASE STUDY IN ENVIRONMENTAL SCIENCE (3 Credits)

Pre-requisites: The students must have completed at least 24 advanced credits (level 2/3) and projects will be awarded at the discretion of the supervisor.

Anti-requisite: ENSC3900 Research Project in Environmental Science

Syllabus: This course provides an opportunity for students to take theoretical ideas learned and apply them directly to the world around them to raise awareness in environmental issues. It allows students to develop an idea, synthesise data and information, and develop this into a concept for dissemination. Students will be able to choose from but are not limited to the following options: 1. Primary Research, 2. Secondary Research, 3. Case Study Paper, 4. Service-Learning Project, 5. Creative Project.

Students are expected to spend a minimum of at least 36 hours of work on the project across a semester, meeting weekly with their supervisor(s). At the beginning of the course the students are expected to write a short proposal for their case study. At the end of the course students are required to provide a report

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

summarising their study as well as an appropriate presentation (e.g., poster, power point, blog, video) to disseminate their work.

Teaching: The course is based on active learning. The student will independently gather information sources to develop the case study which will be kept in the form of a journal which will be assessed each week to ensure progress. Students will also be involved in weekly group meetings/discussions/tutorial sessions with their supervisor(s) who will guide them in the case study design, data collection/synthesis, and the analysis and interpretation of such data/information. Online content will provide the foundation of the course content which will be reinforced throughout weekly supervisor assessment of progress. A library session will be provided for students to assist them in developing their skills in searching online databases for relevant resources.

Method of Examination: The course will be assessed by means of 100% coursework as follows:

Proposal	10%
Concept Map	10%
Project Report and Journal Assessment	40%
Presentation	20%
Supervisor Assessment	20%

ENSC3090 - PROFESSIONAL PLACEMENT FOR ENVIRONMENTAL SCIENCE (3 CREDITS)

Pre-requisites: 15 credits from other Level II/III ENSC/ECOL/ BIOL courses AND permission of the Department

Syllabus: The course provides a formal internship of at least 4 weeks (160 hours) duration at a relevant private sector, public sector, or non-Governmental organisation during which students undertake agreed upon activities relevant to their studies in Environmental Sciences. Students will work under the guidance of a workplace supervisor as well as an on-campus supervisor and will submit a report and make a presentation within the Department or Major at the end of the internship. Through exposure to the working environment, students will acquire transferable skills that will be useful in any future employment sphere.

Teaching: The professional placement in an organisation will normally take place during the summer school period, and students will be registered for the course as a summer school course. Students intending to register for the course in summer must present an up-to-date curriculum vitae (CV) to the course coordinator by a stated deadline in semester 2. At the same time, host organisations will meet with the course coordinator and provide a summary of possible activities (work plan) successful students would undertake in their organisation. Student CVs will be circulated to potential workplace supervisors and the course coordinator will assign placements to the mutual satisfaction of the students and host organisations. Students must attend the orientation workshops and may have to attend an interview before embarking on the professional placement.

Method of Examination:

Student's Placement Report	50%
Workplace Supervisor's Appraisal	35%
Oral presentation of report	15%

ENSC3103 - LANDSCAPES AND LANDFORMS OF THE LESSER ANTILLES (3 Credits)

Pre-requisites: ENSC2000 Essentials of Oceanography, ENSC2002 Earth's Climate, and ENSC2005 Earth Life Cycles.

Syllabus: This three-week intensive course offered only summer (first weeks of August) utilizes the Lesser Antilles as case studies to gain an understanding of the interactive human-environment processes related to the region but centered specifically on in-depth coverage of geomorphology (landforms and their processes) and the influence/interaction people have had on the specific landforms/landform types found in each Lesser Antillean Island/island group. Taking into account how the physical landscape interacts with the human landscape, this course's primary goal rests on enabling students to develop a better understanding of the interactions between the broader landscape and geomorphology/landforms throughout the Lesser Antilles by engaging them in evaluations of past, present, and (potential) future geologically-affected phenomena across the region related to these topics. While the course offers students a broad overview of the Lesser Antilles' geomorphology and landscape, it also retains a more focused approach, requiring students to interact with each island nation through case studies, presentations, and local field trips.

Teaching: Three continuous weeks of lecture- and field-based excursions.

Method of Examination: 100% coursework based on intensive and continuous lectures and seminars supported by multiple fieldtrips and fieldwork for gathering and subsequently assessing data, case studies, directed readings with group discussions and presentations, and weekly quizzes. Students will be required to share/present their knowledge when called upon spontaneously in the field.

ENSC3900 - RESEARCH PROJECT IN ENVIRONMENTAL SCIENCE (6 Credits)

Pre-requisites: A minimum of 6 credits from ENSC level II or III courses. The students must be in their final year and projects will be awarded at the discretion of the supervisor.

Restrictions: Any other 6 credit research project offered within the Department of Biological and Chemical Sciences

Syllabus: This course provides an opportunity to involve students in practical research in environmental science fields. It provides the opportunity for students to further develop their practical and analytical skills acquired in the level II and III environmental science courses. The course is developed around a research project defined and supervised by a member(s) of the Faculty of Science and Technology. A research project will be assigned to students who show interest in such a course and who have already demonstrated some abilities in environmental sciences. Students are expected to spend a total of 144 hours of work on the project across both semesters or the summer, meeting weekly with their supervisor(s).

Teaching: Students will be involved in weekly meeting/discussions with their supervisor(s) who will provide training in relevant laboratory/field methods/skills and guide the student in experimental design, data collection and the analysis and interpretation of the data collected. A library session for students to assist them in developing their skills in searching online databases for relevant resources will be provided.

Method of Examination:

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Supervisor's Assessment	15%
Seminar	15%
Project Report	70%

LEVEL III SUSTAINABILITY COURSES

ENSC3100 - PRINCIPLES OF SUSTAINABILITY (3 Credits)

Pre-requisites: Enrolment in the Sustainability Minor, which requires students to have completed all level 1 credits as well as 21 credits at level 2 & 3, and have a GPA at 3.0, or at the discretion of the coordinator of the programme for student with a lower GPA.

Syllabus: This two-week intensive course introduces the science of sustainability, encompassing the three pillars of sustainability – social, economic, and environmental sustainability. The course focuses on the Caribbean Region which is now recognized at high level risk in relation to human induced climate change and its impact on coral reefs and fisheries for example.

Teaching: Intensive learning which involves two continuous weeks of lectures and seminars supported by case studies, directed readings with group discussions, and field trips. Lectures: Traditional lectures will be given every morning in class. Case studies: Students (alone or in groups, depending on enrolment) are required to read, summarize, and present a case study relevant to the field of Sustainability Science in Barbados or the Caribbean to the class. Directed Readings and Group Discussions: Students are required to read one to three articles from the primary literature on Sustainability Science. They will then participate in a group discussion related to these readings. Seminars: Students will attend research seminars that will be followed by a question-and-answer session and discussion. Field Trip: Students will be taken to field sites in Barbados (e.g., Barbados Museum, United Nation House) where they will collect data for their field trip report.

Method of Examination:

The course will be assessed using 100% coursework comprising quizzes, written assignments related to directed readings, case study presentations, field trip reports, and participation in class discussions, seminars, and field trips. Specifically:

Two in-class quizzes (one per week)	20%
Written Directed Readings Assignments (two assignments)	15%
Group Discussions	15%
Participation (after the seminars and during the field trips)	15%
Written Field Trip Reports	15%
Case Study Presentation to the class	20%

ENSC3101 - CLIMATE & WEATHER IN THE CARIBBEAN (3 Credits)

Pre-requisites: Enrolment in the Sustainability Minor, which requires students to have completed all level 1 credits as well as 21 credits at level 2 & 3, and have a GPA at 3.0, or at the discretion of the coordinator of the programme for student with a lower GPA.

Syllabus: Introduces the physical environment of the Caribbean, focusing on oceanic and atmospheric circulations and how they affect the local climate. Despite its title, this course is not going into deep details about meteorological processes that occur in the Caribbean. The world weather reflects here to the basic information given to Caribbean citizen. It also highlights the variability of the climate.

Teaching: Intensive learning which involves two continuous weeks of lectures and seminars supported by case studies, directed readings with group discussions, and field trips. **Lectures:** Traditional lectures will be given every morning in class. **Case studies:** Students (alone or in groups, depending on enrolment) are required to read, summarize, and present a case study relevant to the field of climate and weather in Barbados or the Caribbean to the class. **Directed Readings and Group Discussions:** Students are required to read one to three articles from the primary literature. They will then participate in a group discussion related to these readings. **Seminars:** Students will attend research seminars that will be followed by a question-and-answer session and discussion. **Field Trip:** Students will be taken to field sites in Barbados (e.g., Caribbean Institute for Meteorology & Hydrology, Barbados Weather Radar, Barbados Meteorological Service) where they will collect data for their field trip report.

Method of Examination:

The course will be assessed using 100% coursework comprising quizzes, written assignments related to directed readings, case study presentations, field trip reports, and participation in class discussions, seminars, and field trips. Specifically:

Two in-class quizzes (one per week)	20%
Written Directed Readings Assignments (two assignments)	15%
Group Discussions	15%
Participation (after the seminars and during the field trips)	15%
Written Field Trip Reports	15%
Case Study Presentation to the class	20%

ENSC3102 - BIODIVERSITY IN THE CARIBBEAN (3 Credits)

Pre-requisites: Enrolment in the Sustainability Minor, which requires students to have completed all level 1 credits as well as 21 credits at level 2 & 3, and have a GPA at 3.0, or at the discretion of the coordinator of the programme for student with a lower GPA.

Syllabus: Introduces the science of biodiversity. It covers biodiversity loss, the measure of ecological integrity of ecosystems, and the patterns of diversification and evolution of terrestrial and oceanic biotas, with a focus on the Caribbean. The course will be assessed using 100% coursework comprising quizzes, written assignments related to directed readings, case study presentations, field trip reports, and participation in class discussions, seminars, and field trips.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Teaching: An intensive and involves two continuous weeks of lectures and seminars supported by case studies, directed readings with group discussions, and field trips. Lectures: Traditional lectures will be given every morning in class. Case studies: Students (alone or in groups, depending on enrolment) are required to read, summarize, and present a case study relevant to the field of biodiversity in Barbados or the Caribbean to the class. Directed Readings and Group Discussions: Students are required to read one to three articles from the primary literature on the theory of biodiversity in general. They will then participate in a group discussion related to these readings. Seminars: Students will attend research seminars that will be followed by a question-and-answer session and discussion. Field Trip: Students will be taken to field sites in Barbados (e.g., Bellairs reef, Welchman Hall Gully) where they will collect data for their field trip report.

Method of Examination: The course will be assessed using 100% coursework comprising quizzes, written assignments related to directed readings, case study presentations, field trip reports, and participation in class discussions, seminars, and field trips. Specifically:

Two in-class quizzes (one per week)	20%
Written Directed Readings Assignments (two assignments)	15%
Group Discussions	15%
Participation (after the seminars and during the field trips)	15%
Written Field Trip Reports	15%
Case Study Presentation to the class	20%

ENSC3901 - BARBADOS RESEARCH PROJECT (6 Credits)

Pre-requisites: Enrolment in the Sustainability Minor, which requires students to have completed all level 1 credits as well as 21 credits at level 2 & 3, and have a GPA at 3.0, or at the discretion of the coordinator of the programme for student with a lower GPA.

Syllabus: This is a research project-based course that facilitates the application of methods used in sustainability science to a real-life issue in Barbados. It centres on the research process—the research proposal, testable scientific questions, data collection, data analysis and presentation of research findings orally and in writing.

Teaching: The field research is co-supervised by a McGill Faculty and a local partner; students will work in small groups of two to four persons. The research co-supervisors may be, but not necessarily, the instructors of the other courses in the Minor in Sustainability of the Caribbean. Students will identify a research project, supervisor, and local collaborator from a set of proposed projects presented at the onset of the programme. They will write a short research proposal, establish contact with their host local partner and prepare a research plan describing the plan of action, methodology, timeline, etc. Students will work on their research project one day a week for the first 6 weeks of the programme. The full-time research work will be conducted over the last 6 weeks of the programme and students will meet at least once weekly (remotely) with the McGill faculty supervising the project. Friday afternoons are devoted to peer class activity during which students will present their progress to the rest of the class and obtain feed-back from their peers. Daily check-ins will be done with the PA (Program Assistant).

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Method of Examination:

This course will be assessed using 100% coursework as follows:

Research Proposal	10%
Research Plan	20%
Oral Presentation	30%
Final Report	40%

FOOD SCIENCE COURSES

LEVEL II FOOD SCIENCE COURSES

FDSC2000 – FUNDAMENTALS OF FOOD PROCESSING (3 Credits)

Pre-requisites: 18 Level I FST credits

Syllabus: This course in Meat Processing equips students with specialized knowledge, technical skills, and a professional mindset aligned with the demands of the global food processing industry. By integrating food technology, engineering, biology, and quality control, students gain a holistic understanding of the field. Practical applications alongside theoretical learning enhance problem-solving abilities and foster innovation, preparing students for impactful careers in this dynamic sector. This interdisciplinary approach addresses industry needs, builds expertise, and nurtures a commitment to quality and sustainability.

Teaching: Fifteen (15) hours of lectures, fifteen (15) hours of practical/field trips, and eighteen (18) hours of group activities.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	30%
Practical/Field trips:	20%

FDSC2001 – PRINCIPLES OF FOOD SCIENCE (3 Credits)

Pre-requisites: 18 Level I FST credits

Syllabus: Understanding the nature and processes needed to ensure food is safe, nutritious, palatable, and appealing is required for overall good quality and consumers wellbeing. Many variables including science and technology can impact the quality and safety of food; therefore, students must be familiar with these factors that can enhance or affect food and the food supply chain. Overall, this course will enable students to understand the role of processing, technology and safety in the advancement of food science.

Teaching: Twenty-four (24) hours of lectures and twenty-four (24) hours of practicals.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	30%
Practical/Case studies:	20%

FDSC2300 – FOOD FERMENTATION (3 Credits)

Pre-requisites: 18 Level I FST credits

Syllabus: This course introduces the basic principles of food and beverage fermentation. It provides an in-depth examination of the mechanisms used by microorganisms to carry out fermentation and the biochemical pathways involved in various fermentation systems. The course will be team-taught by existing staff and a series of specialist guest lecturers, where traditional and modern fermentation processes will be discussed. It

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

gives a first-hand look at what is involved in producing a range of local non-alcoholic and alcoholic fermented products including: yogurt, cheese, kombucha, chocolate, beer and wine fermentations.

Teaching: Eighteen (18) hours of lectures, six (6) hours of tutorials, and twenty-four (24) hours of practicals/field trips.

Method of Examination:

Theory: Final Examination (2 hours)	50%
Theory: In-course Test(s)/Assignment(s)	30%
Practical/Field trips:	20%

LEVEL III FOOD SCIENCE COURSES

FDSC3300 – PROJECT FOR FOOD SCIENCE MINORS (3 Credits)

Pre-requisites: 18 Level I FST credits

Syllabus: This course allows students to experience what real research in a subdiscipline of food science involves. Over one semester, students will conduct a literature review, propose a concise research plan, conduct research and present their findings both as a concise written report and oral presentation (seminar/poster). They will acquire and apply a range of practical and theoretical research skills designed to augment knowledge already obtained in pursuit of the Minor in Food Science. In addition, students will develop skills desirable in a UWI graduate such as innovation, problem solving and effective communication.

Teaching: Seventy-two (72) hours of practicals.

Method of Examination:

Project report	60%
Oral/Poster presentation	25%
Supervisor assessment	15%

COURSES BY SEMESTER

COMPUTER SCIENCE, ELECTRONICS, MATHEMATICS, PHYSICS AND SOFTWARE ENGINEERING

SEMESTER I

PRELIMINARY (6 Credits)

COMP0001 Preliminary Computer Science I
MATH0100 Pre-Calculus
PHYS0070 Preliminary Physics I

LEVEL I (3 Credits)

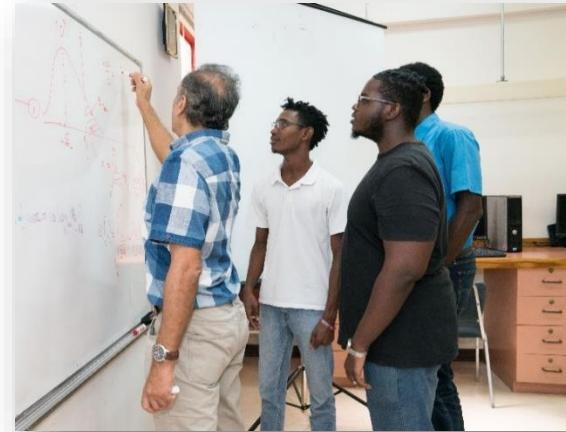
COMP1170 Entrepreneurship for Computer Scientist
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
ELET1205 Computer Aided Design
ELET1210 Digital Electronics I
ELET1220 Introduction to Electronics
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1190 Calculus A
MATH1235 Python Programming & Mathematical Software
PHYS1200 Physics I: Mechanics of Translational Motion
PHYS1205 Physics II: Rotation, Waves and Thermodynamics
SWEN1000 An Introduction to Computing I
SWEN1002 Computing in Society
SWEN1004 Mathematics for Software Engineers

SWEN1006 Research Methods for Software Engineers

SWEN1009 An Introduction to Computing II

LEVEL II (3 Credits)

COMP2210 Mathematics for Computer Science II
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2235 Networks I
COMP2245 Web Development Concepts, Tools & Practices
COMP2611 Data Structures
ELET2215 Microprocessor Systems
ELET2230 Digital Communication Systems I
ELET2240 Sensor & Actuator Devices
MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2315 Linear Algebra 1
MATH2330 Probability Theory 1
PHYS2400 Mathematical Methods in Physics I
PHYS2410 Modern Physics
PHYS2420 Advanced Physics Laboratory I
SWEN2001 An Intro to Software Engineering
SWEN2003 Computer Networking & Security
SWEN2004 Computer Organisation
SWEN2006: Discrete Mathematics for Software Engineers


**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

SWEN2010 Beginner Chinese Language
SWEN2013 Elementary Chinese Culture and Language
SWEN2013 Elementary Chinese Culture and Language

PHYS3420 Electromagnetic Theory I
PHYS3455 Lasers and Optical Systems
PHYS 3475 Introduction to Solid State Physics
PHYS3485 Theory of Statistical Mechanics
PHYS3490 Physics One-Semester Research Project

LEVEL III (3 Credits)

COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
COMP3370 Software Engineering on a Large Scale
COMP3385 Framework Design For Advanced Web Development
COMP3412 Scalable Enterprise Web Applications
COMP3440 E-Commerce
COMP3450 Fundamentals of Artificial Intelligence
COMP3490 Research Project in Computer Science
COMP3495 Major Research Project in Computer Science
COMP3499 Group Research Project in Computer Science
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project
MATH3543 Abstract Algebra 2
MATH3550 Real Analysis 2
MATH3565 Probability Theory 2
MATH3590 Mathematics Research Project
MATH3600 Topics in Discrete & Computational Geometry
MATH3605 Topics in Graph Theory
MATH3620 Financial Mathematics 1

SEMESTER II

PRELIMINARY (6 Credits)

COMP0002 Preliminary Computer Science II
MATH0110 Calculus and Analytical Geometry
PHYS0071 Preliminary Physics II

LEVEL I (3 Credits)

COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
ELET1200 Basic Circuit Analysis
ELET1215 Digital Electronics II
MATH1152 Sets and Number Systems
MATH1195 Calculus B
MATH1230 Introductory Applied Statistics 1
PHYS1210 Physics III: Electric Fields, Currents and Circuits
PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics
SWEN1001 An Introduction to Object Oriented Programming
SWEN1003 Current and Future Trends in Computing for Software Engineers
SWEN1005 Mobile Web Programming
SWEN1007 Software Engineering Essentials
SWEN1008 Technical Writing for Software Engineers

LEVEL II (3 Credits)

COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
ELET2220 Circuit Simulation & Applications

ELET2225 Discrete Component Electronics
ELET2235 Automation Technology & Applications
ENSC2003 Sustainable Energy Systems
MATH2310 Abstract Algebra 1
MATH2321 Real Analysis 1
MATH2325 Elementary Number Theory
MATH2335 Statistics 1
PHYS2405 Mathematical Methods in Physics II
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I
SWEN2000 An Introduction to Requirements Engineering
SWEN2002 An Introduction to the Analysis of Algorithms
SWEN2005 Database Systems
SWEN2007 Object Oriented Design and Implementation
SWEN2011 Beginners Chinese Language and IT Business Environment

LEVEL III (3 Credits)

COMP3360 Networks II
COMP3375 Software Testing and Quality
COMP3415 Database Management Systems II
COMP3420 Computer Graphics
COMP3435 User-Interface Design
COMP3445 Computer Information Systems
COMP3490 Research Project in Computer Science
COMP3499 Group Research Project in Computer Science
ELET3215 Microcontroller Technology
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

ELET3290 Semester Electronics Research Project
MATH3545 Linear Algebra 2
MATH3555 Complex Analysis
MATH3560 Metric Spaces
MATH3570 Statistics 2
MATH3575 Topics in Numerical Analysis
MATH3580 Fourier Analysis with Partial Differential Equations
MATH3621 Financial Mathematics 2
PHYS3445 Fundamentals of General Relativity and Cosmology
PHYS3460 Physics of Sustainable Energy Systems
PHYS3465 Electromagnetic Theory II
PHYS3470 Biological Physics
PHYS3475 Fundamentals of Solid State Physics
PHYS3480 Theory of Quantum Mechanics
PHYS3490 Physics One-Semester Research Project

YEAR-LONG COURSES

COMP3495 Major Research Project in Computer Science
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project
PHYS3495 Physics Two-Semester Research Project

SUMMER COURSES

COMP3955 Computer Science Internship
ELET3955 Electronics Internship
MATH3955 Mathematics Internship
PHYS3955 Physics Internship

COMPUTER SCIENCE, INFORMATION TECHNOLOGY AND SOFTWARE ENGINEERING

The Department of Computer Science, Mathematics & Physics offers a Major, Double Major and Minor in Computer Science and a Major and Minor in Information Technology. In association with the Faculty of Social Sciences, the Options of a Double Major combining Computer Science or Information Technology with Accounting or Management are also offered to select students (See [Appendix V](#), Options in conjunction with other Faculties).

It is a requirement of the discipline that, to pass any Computer Science course, students must pass both Coursework and Final exam.

MAJOR IN COMPUTER SCIENCE: [Course Descriptions](#)

LEVEL I (15 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists

COMP1180 Mathematics for Computer Science I

COMP1205 Computing I

COMP1210 Computing II

COMP1215 UNIX

COMP2235 Networks I

COMP2245 Web Development Concepts, Tools and Practices

COMP2410 Computing in the Digital Age

COMP2415 Information Technology Engineering

COMP2950 Computer Science Elective

COMP3360 Networks II

COMP3450 Fundamentals of Artificial Intelligence

COMP3370 Software Engineering on A Large Scale

COMP3375 Software Testing and Quality

COMP3385 Framework Design for Advanced Web Development

COMP3412 Scalable Enterprise Web Applications

COMP3415 Database Management Systems II

COMP3420 Computer Graphics

COMP3435 User Interface Design

COMP3440 E-Commerce

COMP3445 Computer Information Systems

COMP3490 Research Project in Computer Science

COMP3495 Major Research Project in Computer Science (6 Credits)

COMP3499 Group Research Project in Computer Science

COMP3955 Computer Science Internship

LEVEL II & III (30 CREDITS)

LEVEL II (15 CREDITS)

COMP2210 Mathematics for Computer Science II

COMP2220 Computer System Architecture

COMP2225 Software Engineering

COMP2232 Object-Oriented Programming Concepts

COMP2611 Data Structures

LEVEL III (15 CREDITS)

COMP3310 Algorithms

COMP3320 Design Principles of Operating Systems

COMP3330 Database Management Systems I

AND at least Six (6) Credits (including at least one

Level III course) from Computer Science Elective

Courses:

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

MINOR IN COMPUTER SCIENCE: [Course Descriptions](#)

LEVEL I (15 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX

COMP3420 Computer Graphics
COMP3435 User Interface Design
COMP3440 E-Commerce
COMP3445 Computer Information Systems
COMP3490 Research Project in Computer Science
COMP3495 Major Research Project in Computer Science (6 Credits)
COMP3499 Group Research Project in Computer Science

LEVEL II & III (15 CREDITS)

At Least Nine (9) Credits From:

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I

AND at Most Six (6) Credits from Computer Science Elective Courses:

COMP2235 Networks I
COMP2245 Web Development Concepts, Tools and Practices
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2950 Computer Science Elective
COMP3360 Networks II
COMP3450 Fundamentals of Artificial Intelligence
COMP3370 Software Engineering On A Large Scale
COMP3375 Software Testing and Quality
COMP3385 Framework Design For Advanced Web Development
COMP3412 Scalable Enterprise Web Applications
COMP3415 Database Management Systems II

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

MAJOR IN INFORMATION TECHNOLOGY:[Course Descriptions](#)

LEVEL I (15 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX

COMP3320 Design Principles of Operating Systems

COMP3360 Networks II
COMP3450 Fundamentals of Artificial Intelligence
COMP3370 Software Engineering on a Large Scale
COMP3375 Software Testing and Quality
COMP3385 Framework Design for Advanced Web Development

LEVEL II & III (30 CREDITS)

LEVEL II (15 CREDITS)

COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures

COMP3445 Computer Information Systems

COMP3490 Research Project in Computer Science
COMP3495 Major Research Project in Computer Science (6 Credits)
COMP3499 Group Research Project in Computer Science
COMP3955 Computer Science Internship

LEVEL III (15 CREDITS)

COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User-Interface Design

AND at least Six (6) Credits (including at least one Level III course) from Information Technology

Elective Courses:

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2235 Networks I
COMP2245 Web Development Concepts, Tools and Practices
COMP2950 Computer Science Elective
COMP3310 Algorithms

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

MINOR IN INFORMATION TECHNOLOGY: [Course Descriptions](#)

LEVEL I (15 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX

COMP3420 Computer Graphics
COMP3440 E-Commerce
COMP3445 Computer Information Systems
COMP3490 Research Project in Computer Science
COMP3495 Major Research Project in Computer Science (6 Credits)
COMP3499 Group Research Project in Computer Science

LEVEL II & III (15 CREDITS)

At Least Nine (9) Credits From:

COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
COMP3330 Database Management Systems I
COMP3435 User Interface Design
COMP3415 Database Management Systems II

AND At Most Six (6) Credits From:

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2235 Networks I
COMP2245 Web Development Concepts, Tools and Practices
COMP2950 Computer Science Elective
COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3360 Networks II
COMP3450 Fundamentals of Artificial Intelligence
COMP3370 Software Engineering on A Large Scale
COMP3375 Software Testing and Quality
COMP3385 Framework Design for Advanced Web Development
COMP3412 Scalable Enterprise Web Applications

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

DOUBLE MAJOR IN COMPUTER SCIENCE: [Course Descriptions](#)

LEVEL I (15 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX

AND at least Twenty-Four (24) Credits from Computer Science Elective Courses:

COMP2245 Web Development Concepts, Tools and Practices
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2950 Computer Science Elective
COMP3450 Fundamentals of Artificial Intelligence
COMP3370 Software Engineering On A Large Scale
COMP3375 Software Testing and Quality
COMP3385 Framework Design For Advanced Web Development
COMP3412 Scalable Enterprise Web Applications
COMP3415 Database Management Systems II
COMP3420 Computer Graphics
COMP3435 User-Interface Design
COMP3440 E-Commerce
COMP3445 Computer Information Systems
COMP3955 Computer Science Internship

LEVEL II & III (30 CREDITS)

LEVEL II (18 CREDITS)

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2235 Networks I
COMP2611 Data Structures

LEVEL III (18 CREDITS)

COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
COMP3360 Networks II

AND Six (6) Level III credits from ONE of the three Computer Science combinations listed below:

1. COMP3490 Research Project in Computer Science
AND Three (3) Level III credits from Computer Science

OR
2. COMP3495 Major Research Project in Computer Science (6 Credits)

OR
3. COMP3499 Group Research Project in Computer Science **AND** Three (3) Level III credits from Computer Science

MAJOR IN SOFTWARE ENGINEERING (UWICIIT): [Course Descriptions](#)

LEVEL I (30 CREDITS)

SWEN1000 An Introduction to Computing I
SWEN1001 An Introduction to Object Oriented Programming
SWEN1002 Computing in Society
SWEN1003 Current and Future Trends in Computing for Software Engineers
SWEN1004 Mathematics for Software Engineers
SWEN1005 Mobile Web Programming
SWEN1006 Research Methods for Software Engineers
SWEN1007 Software Engineering Essentials
SWEN1008 Technical Writing for Software Engineers
SWEN1009 An Introduction to Computing II

LEVEL II (36 CREDITS)

SWEN2000 An Introduction to Requirements Engineering
SWEN2001 An Introduction to Software Engineering
SWEN2002 An Introduction to the Analysis of Algorithms
SWEN2003 Computer Networking & Security
SWEN2004 Computer Organisation
SWEN2005 Database Systems
SWEN2006 Discrete Mathematics for Software Engineers
SWEN2007 Object Oriented Design and Implementation
SWEN2010 Beginner Chinese Language
SWEN2011 Beginners Chinese Language and IT Business Environment
SWEN2013 Elementary Chinese Culture and Language

SWEN2014 Intermediate Chinese Culture and Language*

LEVEL III (33 CREDITS)

SWEN3000 Application Development for IOS Devices*
SWEN3001 Android Application Development I*
SWEN3002 Android Application Development II*
SWEN3003 Web & Mobile Application Development I*
SWEN3004 Web & Mobile Application Development II*
SWEN3120 Software Architecture*
SWEN3130 Project Management for Software Engineering*
SWEN3145 Software Modelling*
SWEN3165 Software Testing*
SWEN3912 Internship in Computing II (6 Credits)*

LEVEL IV (13 CREDITS)

SWEN4001 Advanced Database Systems*
SWEN4008 IT Certification I*
SWEN4050 Software Engineering Capstone Project*
(6 Credits)

*course taught in China

ELECTRONICS

The Department of Computer Science, Mathematics & Physics offers a Major and Minor in Electronics.

MAJOR IN ELECTRONICS: [Course Descriptions](#)

LEVEL I (18 CREDITS)

ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
COMP1205 Computing I
MATH1190 Calculus A

ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project
ELET3955 Electronics Internship

LEVEL II & III (30 CREDITS)

LEVEL II

At Least Twelve (12) Credits (Four Courses)

From:

ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
ELET2240 Sensor & Actuation Devices
PHYS2400 Mathematical Methods in
Physics I

LEVEL III

At Most Eighteen (18) Credits (Six Courses)

From:

ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing
(DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III

MINOR IN ELECTRONICS: [Course Descriptions](#)

LEVEL I (18 CREDITS)

ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
COMP1205 Computing I
MATH1190 Calculus A

LEVEL II & III (15 CREDITS)

Fifteen (15) Credits (Five Courses) From:

ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
ELET2240 Sensor & Actuation Devices
PHYS2400 Mathematical Methods in
Physics I
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing
(DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project

MATHEMATICS

The Department of Computer Science, Mathematics & Physics offers a Double Major, Major and Minor in Mathematics.

It is a requirement of the discipline that, to pass any Mathematics course, students must pass the Final exam and attain an overall course grade of more than 50%.

MAJOR IN MATHEMATICS: [Course Descriptions](#)

LEVEL I (15 CREDITS)

MATH1141 Introductory Linear Algebra &
Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1235 Python Programming & Mathematical
Software

LEVEL II & III (30 CREDITS)

LEVEL II (15 CREDITS)

MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1

LEVEL III (15 CREDITS)

MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2 **AND**
MATH3555 Complex Analysis **OR**
MATH3560 Metric Spaces

AND Three (3) Credits from Mathematics Elective

Courses:

MATH2325 Elementary Number Theory
MATH2330 Probability Theory 1
MATH2335 Statistics 1
MATH3555 Complex Analysis
MATH3560 Metric Spaces
MATH3565 Probability Theory 2
MATH3570 Statistics 2
MATH3575 Topics in Numerical Analysis
MATH3580 Fourier Analysis with Partial Differential
Equations
MATH3600 Topics in Discrete and Computational
Geometry
MATH3605 Topics in Graph Theory
MATH3620 Financial Mathematics 1
MATH3621 Financial Mathematics 2
MATH3955 Mathematics Internship

MINOR IN MATHEMATICS: [Course Descriptions](#)

LEVEL I (15 CREDITS)

MATH1141 Introductory Linear Algebra &
Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1235 Python Programming & Mathematical
Software

LEVEL II (15 CREDITS)

MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1

THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026

DOUBLE MAJOR IN MATHEMATICS: [Course Descriptions](#)

LEVEL I (18 CREDITS)

MATH1141 Introductory Linear Algebra &
Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1230 Introductory Applied Statistics 1
MATH1235 Python Programming & Mathematical
Software

AND Twenty-Seven (27) Credits from

Mathematics Elective Courses:

MATH2325 Elementary Number Theory
MATH3555 Complex Analysis
MATH3560 Metric Spaces
MATH3565 Probability Theory 2
MATH3570 Statistics 2
MATH3575 Topics in Numerical Analysis
MATH3580 Fourier Analysis with Partial
Differential Equations
MATH3600 Topics in Discrete and Computational
Geometry

LEVEL II & III (60 CREDITS)

LEVEL II (21 CREDITS)

MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
MATH2330 Probability Theory 1
MATH2335 Statistics 1

MATH3605 Topics in Graph Theory

MATH3590 Research Project in Mathematics
MATH3955 Mathematics Internship

LEVEL III (39 CREDITS)

MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2 **AND**
MATH3555 Complex Analysis **OR**
MATH3560 Metric Spaces

The Department of Computer Science, Mathematics & Physics offers a Major and Minor in Physics.

MAJOR IN PHYSICS: [Course Descriptions](#)

LEVEL I (18 CREDITS)

PHYS1200 Physics I: Mechanics of Translational Motion
PHYS1205 Physics II: Rotation, Waves and Thermodynamics
PHYS1210 Physics III: Electric Fields, Currents and Circuits
PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics
MATH1190 Calculus A
MATH1195 Calculus B

ELET2235 Automation Technology and Applications
ELET2240 Sensor and Actuation Devices
ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors and Systems
PHYS2425 Computational Methods in Physics
PHYS3445 Fundamentals of General Relativity and Cosmology
PHYS3450 Fluid Mechanics
PHYS3455 Lasers and Optical Systems
PHYS3460 Physics of Sustainable Energy Systems
PHYS3465 Electromagnetic Theory II
PHYS3470 Biological Physics
PHYS3475 Fundamentals of Solid State Physics
PHYS3490 Physics One-Semester Research Project
PHYS3495 Physics Two-Semester Research Project
PHYS3955 Physics Internship

LEVEL II & III (30 CREDITS)

LEVEL II (15 CREDITS)

PHYS2400 Mathematical Methods in Physics I
PHYS2405 Mathematical Methods in Physics II
PHYS2410 Modern Physics
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I

LEVEL III (15 CREDITS)

PHYS3420 Electromagnetic Theory I
PHYS3480 Theory of Quantum Mechanics
PHYS3485 Theory of Statistical Mechanics

AND Six (6) Credits From Physics Elective

Courses:

ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation and Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I

MINOR IN PHYSICS: Course Descriptions

LEVEL I (18 CREDITS)

PHYS1200 Physics I: Mechanics of Translational Motion

PHYS1205 Physics II: Rotation, Waves and Thermodynamics

PHYS1210 Physics III: Electric Fields, Currents and Circuits

PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics

MATH1190 Calculus A

MATH1195 Calculus B

LEVEL II & III (15 CREDITS)

PHYS2400 Mathematical Methods in Physics I

PHYS2405 Mathematical Methods in Physics II

PHYS2410 Modern Physics

PHYS2415 Theory of Classical Mechanics

AND at Most Three (3) Credits From:

PHYS2420 Advanced Physics Laboratory I

PHYS3420 Electromagnetic Theory I

PHYS2425 Computational Methods in Physics

PHYS3445 Fundamentals of General Relativity and Cosmology

PHYS3450 Fluid Mechanics

PHYS3455 Lasers and Optical Systems

PHYS3460 Physics of Sustainable Energy Systems

PHYS3465 Electromagnetic Theory II

PHYS3470 Biological Physics

PHYS3475 Fundamentals of Solid State Physics

PHYS3480 Theory of Quantum Mechanics

PHYS3485 Theory of Statistical Mechanics

PROGRAMME STRUCTURE

COMPUTER SCIENCE, ELECTRONICS, INFORMATION TECHNOLOGY, MATHEMATICS, SOFTWARE ENGINEERING AND PHYSICS

BSc COMPUTER SCIENCE

LEVEL I (24 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists

COMP1180 Mathematics for Computer Science I

COMP1205 Computing I

COMP1210 Computing II

COMP1215 UNIX

AND Nine (9) Level I Credits (3 courses) from any Faculty

AND Thirty (30) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-Curricular Course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

LEVELS II & III (60 CREDITS)

LEVEL II (15 CREDITS)

COMP2210 Mathematics for Computer Science II

COMP2220 Computer System Architecture

COMP2225 Software Engineering

COMP2232 Object-Oriented Programming Concepts

COMP2611 Data Structures

LEVEL III (15 CREDITS)

COMP3310 Algorithms

COMP3320 Design Principles of Operating Systems

COMP3330 Database Management Systems I

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc COMPUTER SCIENCE (DOUBLE)

LEVEL I (24 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists

COMP1180 Mathematics for Computer Science I

COMP1205 Computing I

COMP1210 Computing II

COMP1215 UNIX

AND Nine (9) Level I Credits (3 courses) from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (18 CREDITS)

COMP2210 Mathematics for Computer Science II

COMP2220 Computer System Architecture

COMP2225 Software Engineering

COMP2232 Object-Oriented Programming Concepts

COMP2235 Networks I

COMP2611 Data Structures

AND

Three (3) Level III Credits from Computer Science

AND at least Twenty-Four (24) Credits from Level II/III Computer Science Elective Courses.

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

LEVEL III (18 CREDITS)

COMP3310 Algorithms

COMP3320 Design Principles of Operating Systems

COMP3330 Database Management Systems I

COMP3360 Networks II

AND

COMP3490 Research Project in Computer Science

AND

Three (3) Level III Credits from Computer Science

OR

COMP3495 Major Research Project in Computer Science (6 credits)

OR

COMP3499 Group Research Project in Computer Science

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc INFORMATION TECHNOLOGY

LEVEL I (24 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists

COMP1180 Mathematics for Computer Science I

COMP1205 Computing I

COMP1210 Computing II

COMP1215 UNIX

AND Nine (9) Level I Credits from any Faculty

AND Thirty (30) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-Curricular Course.

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

LEVELS II & III (60 CREDITS)

LEVEL II (15 CREDITS)

COMP2225 Software Engineering

COMP2232 Object-Oriented Programming Concepts

COMP2410 Computing in the Digital Age

COMP2415 Information Technology Engineering

COMP2611 Data Structures

LEVEL III (15 CREDITS)

COMP3330 Database Management Systems I

COMP3415 Database Management Systems II

COMP3435 User Interface Design

AND at least Six (6) Credits (including at least one Level III course) from Information Technology

Elective Courses

BSc ELECTRONICS

LEVEL I (24 CREDITS)

ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
COMP1205 Computing I
MATH1190 Calculus A
AND Six (6) Level I Credits from any Faculty

ELET3298 Group Electronics Research Project

ELET3955 Electronics Internship

AND Thirty (30) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-Curricular Course.

LEVELS II & III (60 CREDITS)

LEVEL II (12 CREDITS)

At Least Twelve (12) Credits (Four Courses)

From:

ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
ELET2240 Sensor & Actuation Devices
PHYS2400 Mathematical Methods in Physics I

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

LEVEL III (18 CREDITS)

At Most Eighteen (18) Credits (Six Courses)

From:

ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing
(DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project

BSc MATHEMATICS

LEVEL I (24 CREDITS)

MATH1141 Introductory Linear Algebra & Analytical Geometry

MATH1152 Sets and Number Systems

MATH1190 Calculus A

MATH1195 Calculus B

MATH1235 Python Programming & Mathematical Software

AND Nine (9) Level I Credits (3 courses) from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (15 CREDITS)

MATH2304 Multivariable Calculus

MATH2305 Differential Equations

MATH2310 Abstract Algebra 1

MATH2315 Linear Algebra 1

MATH2321 Real Analysis 1

LEVEL III (15 CREDITS)

MATH3543 Abstract Algebra 2

MATH3545 Linear Algebra 2

MATH3550 Real Analysis 2 **AND**

MATH3555 Complex Analysis **OR**

MATH3560 Metric Spaces

AND Three (3) Credits from Level II/III

Mathematics Elective Courses

AND Thirty (30) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-Curricular Course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

BSc MATHEMATICS (DOUBLE)

LEVEL I (24 CREDITS)

MATH1141 Introductory Linear Algebra &
Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1230 Introductory Applied Statistics I
MATH1235 Python Programming & Mathematical
Software

AND Six (6) Level I Credits from any Faculty

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign
Language course.

LEVELS II & III (60 CREDITS)

LEVEL II (21 CREDITS)

MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
MATH2330 Probability Theory 1
MATH2335 Statistics 1

LEVEL III (39 CREDITS)

MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2 **AND**
MATH3555 Complex Analysis **OR**
MATH3560 Metric Spaces
AND Twenty-Seven (27) Credits from Levels II/III
Mathematics Elective Courses

BSc PHYSICS

LEVEL I (24 CREDITS)

PHYS1200 Physics I: Mechanics of Translational Motion

PHYS1205 Physics II: Rotation, Waves and Thermodynamics

PHYS1210 Physics III: Electric Fields, Currents and Circuits

PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics

MATH1190 Calculus A

MATH1195 Calculus B

AND Six (6) Level I Credits from any Faculty

AND Thirty (30) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-Curricular Course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

LEVELS II & III (60 CREDITS)

LEVEL II (15 CREDITS)

PHYS2400 Mathematical Methods in Physics I

PHYS2405 Mathematical Methods in Physics II

PHYS2410 Modern Physics

PHYS2415 Theory of Classical Mechanics

PHYS2420 Advanced Physics Laboratory I

LEVEL III (15 CREDITS)

PHYS3420 Electromagnetic Theory I

PHYS3480 Theory of Quantum Mechanics

PHYS3485 Theory of Statistical Mechanics

AND Six (6) Credits from Level II/III Physics

Elective Courses

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc SOFTWARE ENGINEERING (UWICIIIT)

LEVEL I (30 CREDITS)

SWEN1000 An Introduction to Computing I
SWEN1001 An Introduction to Object Oriented Programming
SWEN1002 Computing in Society
SWEN1003 Current and Future Trends in Computing for Software Engineers
SWEN1004 Mathematics for Software Engineers
SWEN1005 Mobile Web Programming
SWEN1006 Research Methods for Software Engineers
SWEN1007 Software Engineering Essentials
SWEN1008 Technical Writing for Software Engineers
SWEN1009 An Introduction to Computing II

LEVEL II (27 CREDITS)

SWEN2000 An Introduction to Requirements Engineering
SWEN2001 An Introduction to Software Engineering
SWEN2002 An Introduction to the Analysis of Algorithms
SWEN2003 Computer Networking & Security
SWEN2004 Computer Organisation
SWEN2005 Database Systems
SWEN2006 Discrete Mathematics for Software Engineers
SWEN2007 Object Oriented Design and Implementation
SWEN2010 Beginner Chinese Language

LEVEL III (33 CREDITS)

SWEN3000 Application Development for IOS Devices*
SWEN3001 Android Application Development I*

SWEN3002 Android Application Development II*
SWEN3003 Web & Mobile Application Development I*
SWEN3004 Web & Mobile Application Development II*
SWEN3120 Software Architecture*
SWEN3130 Project Management for Software Engineering*
SWEN3145 Software Modelling*
SWEN3165 Software Testing*
SWEN3912 Internship in Computing II (6 Credits)*

LEVEL IV (15 CREDITS)

SWEN4001 Advanced Database Systems*
SWEN4008 IT Certification I*‡
SWEN4050 Software Engineering Capstone Project (6 Credits)*

AND NINE (9) CREDITS: CHINESE LANGUAGE COURSES

SWEN 2011 Beginners Chinese Language and IT Business Environment
SWEN2013 Elementary Chinese Culture and Language
SWEN2014 Intermediate Chinese Culture and Language*

AND SIX (6) CREDITS: FOUNDATION COURSES**

FOUN1006 Exposition for Academic Purposes
*FOUN 1101 Caribbean Civilization

*course taught in China

‡Pass/Fail

**The two required UWI Foundation Courses must be completed by the end of Year 2

BSc COMPUTER SCIENCE AND ELECTRONICS

LEVEL I (30 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
MATH1190 Calculus A

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses.

AND At Most Eighteen (18) Credits from:**

ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project
ELET3955 Electronics Internship

LEVELS II & III (60 CREDITS)

LEVEL II (27 CREDITS)

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
AND At Least Twelve (12) Credits From:**
ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
ELET2240 Sensor & Actuation Devices
PHYS2400 Mathematical Methods in Physics I

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.
**Students must complete a minimum total of 30 credits from Electronics courses.

LEVEL III (33 CREDITS)

COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc COMPUTER SCIENCE AND MATHEMATICS

LEVEL I (30 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1235 Python Programming & Mathematical Software

MATH3545 Linear Algebra 2

MATH3550 Real Analysis 2

AND

MATH3555 Complex Analysis

OR

MATH3560 Metric Spaces

AND at least Six (6) Credits (including at least one Level III course) from Computer Science Elective Courses.

AND Three (3) Credits from Level II/III Mathematics Elective Courses

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

LEVEL II & III (60 CREDITS)

LEVEL II (30 CREDITS)

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

LEVEL III (30 CREDITS)

COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
MATH3543 Abstract Algebra 2

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc COMPUTER SCIENCE AND METEOROLOGY

LEVEL I (33 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
METE1110 Introduction to Oceans and Climate
METE1125 Meteorological Observations, Instruments & Basic Analysis
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
METE1400 Mathematical Methods for Meteorology
MATH1190 Calculus A

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2125 Dynamic Meteorology
METE2210 Synoptic Meteorology
METE2215 Synoptic Meteorology Lab I

LEVEL III (30 CREDITS)

COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I

METE3110 Advanced Dynamic Meteorology
METE3210 Advanced Synoptic Meteorology
METE3215 Synoptic Meteorology Lab II
METE3310 The Tropics and Tropical Weather Systems
AND at least Six (6) Credits (including at least one Level III course) from Level II/III Computer Science Elective Courses.

AND at LEAST Three (3) Credits from:

METE2305 Fundamentals of Hydrometeorology
METE3420 Radar Meteorology
METE3425 Satellite Meteorology
METE3505 Climate, Biosphere and Ecosystems
METE3600 Numerical Weather Prediction and Computational Methods

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc COMPUTER SCIENCE AND PHYSICS

LEVEL I (33 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
PHYS1200 Physics I: Mechanics of Translational Motion
PHYS1205 Physics II: Rotation, Waves and Thermodynamics
PHYS1210 Physics III: Electric Fields, Currents and Circuits
PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics
MATH1190 Calculus A
MATH1195 Calculus B

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

COMP2210 Mathematics for Computer Science II
COMP2220 Computer System Architecture
COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2611 Data Structures
PHYS2400 Mathematical Methods in Physics I
PHYS2405 Mathematical Methods in Physics II
PHYS2410 Modern Physics
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I

LEVEL III (30 CREDITS)

COMP3310 Algorithms
COMP3320 Design Principles of Operating Systems
COMP3330 Database Management Systems I
PHYS3420 Electromagnetic Theory I
PHYS3480 Theory of Quantum Mechanics
PHYS3485 Theory of Statistical Mechanics
AND at least Six (6) Credits (including at least one Level III course) from Level II/III Computer Science Elective Courses.

AND at least Six (6) Credits from Level II/III Physics Elective Courses

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc ELECTRONICS AND INFORMATION TECHNOLOGY

LEVEL I (30 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
MATH1190 Calculus A

AND at least Six (6) Credits (including at least one Level III course) from Level II/III Information Technology Elective Courses.

At Most Eighteen (18) Credits from:**

ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project
ELET3955 Electronics Internship

LEVELS II & III (60 CREDITS)

LEVEL II (27 CREDITS)

COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures

AND At Least Twelve (12) Credits From:**

ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
ELET2240 Sensor & Actuation Devices
PHYS2400 Mathematical Methods in Physics I

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**Students must complete a minimum total of 30 Level II/III credits from Electronics courses.

LEVEL III (33 CREDITS)

COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design

BSc ELECTRONICS AND MATHEMATICS

LEVEL I (30 CREDITS)

ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
COMP1205 Computing I
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1235 Python Programming & Mathematical Software

MATH3555 Complex Analysis

OR

MATH3560 Metric Spaces
AND 3 Credits from Level II/III Mathematics Elective Courses

AND At Most Eighteen (18) Credits from:**

ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project
ELET3955 Electronics Internship

LEVELS II & III (60 CREDITS)

LEVEL II (27 CREDITS)

MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
AND At Least Twelve (12) Credits From:**
ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
ELET2240 Sensor & Actuation Devices
PHYS2400 Mathematical Methods in Physics I

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.
**Students must complete a minimum total of 30 Level II/III credits from Electronics courses.

LEVEL III (33 CREDITS)

MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2
AND

BSc ELECTRONICS AND METEOROLOGY

LEVEL I (33 CREDITS)

ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
COMP1205 Computing I
METE1110 Introduction to Oceans and Climate
METE1125 Meteorological Observations, Instruments & Basic Analysis
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
METE1400 Mathematical Methods for Meteorology
MATH1190 Calculus A

LEVELS II & III (60 CREDITS)

LEVEL II (27 CREDITS)

METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2125 Dynamic Meteorology
METE2210 Synoptic Meteorology
METE2215 Synoptic Meteorology Lab I
AND At Least Twelve (12) Credits from:
ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
ELET2240 Sensor & Actuation Devices
PHYS2400 Mathematical Methods in Physics I

LEVEL III (33 CREDITS)

METE3110 Advanced Dynamic Meteorology
METE3210 Advanced Synoptic Meteorology
METE3215 Synoptic Meteorology Lab II

METE3310 The Tropics and Tropical Weather Systems

AND at LEAST Three (3) Credits from:

METE2305 Fundamentals of Hydrometeorology
METE3420 Radar Meteorology
METE3425 Satellite Meteorology
METE3505 Climate, Biosphere and Ecosystems
METE3600 Numerical Weather Prediction and Computational Methods

AND At Most Eighteen (18) Credits from:

ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project
ELET3955 Electronics Internship

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.
**Students must complete a minimum total of 30 Level II/III credits from Electronics courses.

BSc ELECTRONICS AND PHYSICS

LEVEL I (33 CREDITS)

ELET1200 Basic Circuit Analysis
ELET1210 Digital Electronics I
ELET1215 Digital Electronics II
ELET1220 Introduction to Electronics
COMP1205 Computing I
PHYS1200 Physics I: Mechanics of Translational Motion
PHYS1205 Physics II: Rotation, Waves and Thermodynamics
PHYS1210 Physics III: Electric Fields, Currents and Circuits
PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics
MATH1190 Calculus A
MATH1195 Calculus B

PHYS3485 Theory of Statistical Mechanics

At Most Eighteen (18) Credits from:**

ELET3215 Microcontroller Technology
ELET3220 Control Systems
ELET3230 Essentials of Digital Signal Processing (DSP)
ELET3235 Digital Communication Systems II
ELET3240 Digital Communication Systems III
ELET3250 Biomedical Instrumentation
ELET3255 Wireless Communications
ELET3260 Advanced Microprocessors & Systems
ELET3290 Semester Electronics Research Project
ELET3295 Major Electronics Research Project
ELET3298 Group Electronics Research Project
ELET3955 Electronics Internship

LEVELS II & III (60 CREDITS)

LEVEL II (27 CREDITS)

PHYS2400 Mathematical Methods in Physics I
PHYS2405 Mathematical Methods in Physics II
PHYS2410 Modern Physics
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I
AND At Least Twelve (12) Credits from:**
ELET2215 Microprocessor Systems
ELET2220 Circuit Simulation & Applications
ELET2225 Discrete Component Electronics
ELET2230 Digital Communication Systems I
ELET2235 Automation Technology & Applications
ELET2240 Sensor & Actuation Devices
PHYS2400 Mathematical Methods in Physics I

AND at least Six (6) Credits from Level II/III Physics Elective Courses

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**Students must complete a minimum total of 30 credits from Electronics courses.

LEVEL III (33 CREDITS)

PHYS3420 Electromagnetic Theory I
PHYS3480 Theory of Quantum Mechanics

BSc INFORMATION TECHNOLOGY AND MATHEMATICS

LEVEL I (30 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1235 Python Programming & Mathematical Software

AND

MATH3555 Complex Analysis
OR
MATH3560 Metric Spaces
AND at least Six (6) Credits (including at least one Level III course) from Level II/III Information Technology Elective Courses
AND Three (3) Credits from Level II/III Mathematics Elective Courses.

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing
AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1

LEVEL III (30 CREDITS)

COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc INFORMATION TECHNOLOGY AND METEOROLOGY

LEVEL I (33 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
METE1110 Introduction to Oceans and Climate
METE1125 Meteorological Observations, Instruments & Basic Analysis
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
METE1400 Mathematical Methods for Meteorology
MATH1190 Calculus A

METE3210 Advanced Synoptic Meteorology

METE3215 Synoptic Meteorology Lab II

METE3310 The Tropics and Tropical Weather Systems

AND at least Six (6) Credits (including at least one Level III course) from Level II/III Information Technology Elective Courses

AND at LEAST Three (3) Credits from:

METE2305 Fundamentals of Hydrometeorology
METE3420 Radar Meteorology
METE3425 Satellite Meteorology
METE3505 Climate, Biosphere and Ecosystems
METE3600 Numerical Weather Prediction and Computational Methods

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2125 Dynamic Meteorology
METE2210 Synoptic Meteorology
METE2215 Synoptic Meteorology Lab I

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

LEVEL III (30 CREDITS)

COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
METE3110 Advanced Dynamic Meteorology

BSc INFORMATION TECHNOLOGY AND PHYSICS

LEVEL I (33 CREDITS)

COMP1170 Entrepreneurship for Computer Scientists
COMP1180 Mathematics for Computer Science I
COMP1205 Computing I
COMP1210 Computing II
COMP1215 UNIX
PHYS1200 Physics I: Mechanics of Translational Motion
PHYS1205 Physics II: Rotation, Waves and Thermodynamics
PHYS1210 Physics III: Electric Fields, Currents and Circuits
PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics
MATH1190 Calculus A
MATH1195 Calculus B

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

COMP2225 Software Engineering
COMP2232 Object-Oriented Programming Concepts
COMP2410 Computing in the Digital Age
COMP2415 Information Technology Engineering
COMP2611 Data Structures
PHYS2400 Mathematical Methods in Physics I
PHYS2405 Mathematical Methods in Physics II
PHYS2410 Modern Physics
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I

LEVEL III (30 CREDITS)

COMP3330 Database Management Systems I
COMP3415 Database Management Systems II
COMP3435 User Interface Design
PHYS3420 Electromagnetic Theory I
PHYS3480 Theory of Quantum Mechanics
PHYS3485 Theory of Statistical Mechanics
AND at least Six (6) Credits (including at least one Level III course) from Level II/III Information Technology Elective Courses
AND at least Six (6) Credits from Level II/III Physics Elective Courses

AND Nine (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing
AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc MATHEMATICS AND METEOROLOGY

LEVEL I (30 CREDITS)

MATH1141 Introductory Linear Algebra &
Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1235 Python Programming & Mathematical
Software
METE1110 Introduction to Oceans and Climate
METE1125 Meteorological Observations,
Instruments & Basic Analysis
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology

AND

MATH3555 Complex Analysis

OR

MATH3560 Metric Spaces

**AND Three (3) Credits from Level II/III
Mathematics Elective Courses**

AND at LEAST Three (3) Credits from:

METE2305 Fundamentals of Hydrometeorology

METE3420 Radar Meteorology

METE3425 Satellite Meteorology

METE3505 Climate, Biosphere and Ecosystems

METE3600 Numerical Weather Prediction and
Computational Methods

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2125 Dynamic Meteorology
METE2210 Synoptic Meteorology
METE2215 Synoptic Meteorology Lab I

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign
Language course.

LEVEL III (30 CREDITS)

MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2
METE3110 Advanced Dynamic Meteorology
METE3210 Advanced Synoptic Meteorology
METE3215 Synoptic Meteorology Lab II
METE3310 The Tropics and Tropical Weather
Systems

BSc MATHEMATICS AND PHYSICS

LEVEL I (27 CREDITS)

MATH1141 Introductory Linear Algebra & Analytical Geometry
MATH1152 Sets and Number Systems
MATH1190 Calculus A
MATH1195 Calculus B
MATH1235 Python Programming & Mathematical Software
PHYS1200 Physics I: Mechanics of Translational Motion
PHYS1205 Physics II: Rotation, Waves and Thermodynamics
PHYS1210 Physics III: Electric Fields, Currents and Circuits
PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

MATH2304 Multivariable Calculus
MATH2305 Differential Equations
MATH2310 Abstract Algebra 1
MATH2315 Linear Algebra 1
MATH2321 Real Analysis 1
PHYS2400 Mathematical Methods in Physics I
PHYS2405 Mathematical Methods in Physics II
PHYS2410 Modern Physics
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I

LEVEL III (30 CREDITS)

MATH3543 Abstract Algebra 2
MATH3545 Linear Algebra 2
MATH3550 Real Analysis 2
PHYS3420 Electromagnetic Theory I

PHYS3480 Theory of Quantum Mechanics
PHYS3485 Theory of Statistical Mechanics
AND
MATH3555 Complex Analysis
OR
MATH3560 Metric Spaces
AND Three (3) Credits from Level II/III Mathematics Elective Courses
AND at least Six (6) Credits from Level II/III Physics Elective Courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes
OR
FOUN1008 An Introduction to Professional Writing
AND
*FOUN 1101 Caribbean Civilization
*FOUN1301 Law, Economy, Governance and Society
*A student may substitute one of these with a Foreign Language course.

COMPUTER SCIENCE & INFORMATION TECHNOLOGY COURSES

PRELIMINARY COMPUTER SCIENCE COURSES

COMP0001 - PRELIMINARY COMPUTER SCIENCE I (6 Credits)

Pre-requisite: None

Syllabus: Fundamentals of Information Technology; Relating IT and other Computing disciplines. Distinguish between data and information; Fundamentals of Computer Architecture The components of computer-based systems; Functional components of a computer system (characteristics, performance and interactions Problem Solving with Computers; the problem-solving process; the development and use of algorithms.

Teaching: Four (4) lectures, one (1) tutorial, one (1) 2-hour laboratory per week

Method of Examination:

In-course Test(s)/Assignment(s)	20%
Laboratory Exercises	20%
Final Theory Examination (2 hrs)	60%

COMP0002 - PRELIMINARY COMPUTER SCIENCE II (6 Credits)

Pre-requisite: None

Syllabus: Data structures; Using abstract data types (ADTs); Basic algorithms for sorting and Searching; Software engineering; The software development life cycle Methods, processes, tools and techniques used in software engineering Operating systems and networks; Functions of operating systems Incorporation of networking technology and applications in operating systems Use of information technology tools; Using productivity tools to solve real-life problems Presenting information in an appropriate manner.

Teaching: Four (4) lectures, one (1) tutorial, one (1) 2-hour laboratory per week

Method of Examination:

In-course Test(s)/Assignment(s)	20%
Laboratory Exercises	20%
Final Theory Examination (2 hrs)	60%

LEVEL I COMPUTER SCIENCE COURSES

COMP1170 - ENTREPRENEURSHIP FOR COMPUTER SCIENTISTS (3 Credits)

Pre-requisite: None

Anti-requisite: COMP1130 Web Technology Fundamentals

Syllabus: Entrepreneurship. The importance of technology entrepreneurship. Life stories of successful technology entrepreneurs. How the Internet and e-business applications have changed the way that we communicate and provide entrepreneurial opportunities. How the use of e-business has improved the efficiency of business processes. Privacy, security and legal issues associated with the Internet and entrepreneurship. Market research. Techniques and statistical methods for market research analysis. Pricing strategies. Determining the best price. MS Office tools. Document formatting, table of contents and creating templates. Spreadsheets. Presentation software. Tools for Statistical Analysis. SPSS, Excel or others. HTML and HTML5. Marking up text. Creating links, elements, attributes, forms. Adding images. HTML5 elements and attributes. Audio and video with HTML5. CSS for presentation. Formatting text, floating and positioning. Page layout. The box model. Introduction to JavaScript: variables, conditional statements, loops, functions, events, the browser object. Server-side scripting: Accessing and manipulating form data, Storing form data in a database, Displaying data from the server in a browser.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

COMP1180 - MATHEMATICS FOR COMPUTER SCIENCE I (3 Credits)

Pre-requisites: [(CAPE Pure Mathematics Unit 1 OR Preliminary Mathematics 1) AND (CAPE Pure Mathematics Unit 2 OR Preliminary Mathematics 2)] OR EQUIVALENT

Anti-requisite: MATH1101 Basic Mathematics I

Syllabus: Predicate calculus - Propositions, propositional functions, truth tables, universal and existential quantifiers, logical equivalences, rules of inference, De Morgan's law. Introduction to Mathematical Induction. Sets - Basic properties, Venn diagrams, algebra of sets, Cartesian product, binary operations on set, countable sets, power set, computer representation of sets. Relations - reflexive, symmetric, transitive, equivalence relation. Functions - basic properties, types (Injection, surjection, bijection, inverse), composition, inverse. Number systems - general laws of associatively, commutatively, distribution. Sequences - Arithmetic and Geometric Progressions. Number Theory - division of integers, Euclidean algorithm. Matrices - basic operations.

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.

Method of Examination:

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

COMP1205 - COMPUTING I (3 Credits)

Pre-requisite: None

Anti-requisite: COMP1105 Computer Programming I

Syllabus: Problem solving (top-down, bottom-up, stepwise refinement). Algorithms (pseudocode & flowcharts). Object-oriented concepts (Encapsulation, inheritance, polymorphism, classes, objects, methods, message passing). Integrated Development Environments (editors, compilers, debuggers and libraries). Program anatomy (primitives, data types, objects, variables & constants). Formatted I/O. Operators (assignment, arithmetic, relational, Boolean, precedence rules). Control structures (sequences, selection, repetition). Objects & classes (attributes, methods, interfaces, services, pass-by-value, pass-by-reference, scope rules). Data structures: arrays (linear, multi-dimensional and parallel), array list, aggregate data structures (enumerations). Memory Concepts and Number Systems. Software testing.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

COMP1210 - COMPUTING II (3 Credits)

Pre-requisite: COMP1205 Computing I

Anti-requisite: COMP1115 Computer Programming II

Syllabus: Introduction to Objects and Classes, Fundamental Algorithms for Searching and Sorting, Randomness and Recursion, Data Types, Data Structures, Abstract Data Types, File Processing.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

COMP1215 - UNIX (3 Credits)

Pre-requisite: None

Anti-requisite: COMP1125 Introduction to UNIX

Syllabus: Overview of UNIX - A short history of UNIX and why UNIX. Getting Started - Logging on and off, passwords, overview of the shell, command and utility syntax, issuing commands. Files and directories management - creating, viewing, removing, renaming and securing. Job and process management - Scheduling and monitoring both jobs and processes. Text editors - ed, edit, ex and vi. Basic Account maintenance - shell configuration file, configuration with environmental variables, aliases and shell functions. UNIX utilities - sed, awk, grep. Shell script programming.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Method of Examination:

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

LEVEL II COMPUTER SCIENCE COURSES

COMP2210 - MATHEMATICS FOR COMPUTER SCIENCE II (3 Credits)

Pre-requisite: COMP1180 Mathematics for Computer Science I

Anti-requisite: COMP2105 Discrete Mathematics

Syllabus: Logic; Proofs; Mathematical Induction. Number Theory. Algorithms. Relations. Elementary Combinatorics. Discrete Probability; Elementary Graph Theory. Algebraic Structures. Modelling computation.

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.

Method of Examination:

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

COMP2220 - COMPUTER SYSTEM ARCHITECTURE (3 Credits)

Pre-requisites: [COMP1180 Mathematics for Computer Science I AND COMP1210 Computing II] OR [ELET1210 Digital Electronics I]

Anti-requisite: COMP2125 Computer Architecture

Syllabus: Basic Computer Architecture. Computer Memory. Computer Arithmetic. The Instruction Cycle. Instructions Sets and Assembly Language Programming; System Interconnection. Instruction Sets. Addressing Modes. CPU Structure and Function (Register organization, instruction cycle, instruction pipelining). RISC vs. CISC Architecture.

Teaching: Two (2) hours of lectures and two (2) hour of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

COMP2225 - SOFTWARE ENGINEERING (3 Credits)

Pre-requisite: COMP1210 Computing II

Anti-requisite: COMP2145 Software Engineering I

Syllabus: Teams and Tools. Software Development (Requirements analysis, Specifications, design, implementation validation and verification, maintenance). Project and Product Documentation (User manuals, internal documentation). Software Process Models. Agile Development Methodologies. Project Management.

Teaching: Two (2) hours of lectures and two (2) hour of labs per week.

Method of Examination:

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

COMP2232 - OBJECT ORIENTED PROGRAMMING CONCEPTS (3 Credits)

Pre-requisite: COMP1210 Computing II

Anti-requisite: COMP2160 Object oriented Programming

Syllabus: Object-Oriented Design. Introduction to UML. Structure of an object-oriented class (Classes and Objects, Encapsulation and Information Hiding, Message Passing). Class Design (Inheritance, Composition, Constructors, Polymorphism, Abstract Classes). Error Handling and Testing (Exceptions, Assertions, Design By Contract).

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

COMP2235 - NETWORKS I (3 Credits)

Pre-requisites: COMP1210 Computing II AND COMP1215 UNIX

Anti-requisite: COMP2150 Computer Networks I

Syllabus: OSI and TCP/IP reference models. Network performance. Transmission media. Multiplexing. Packet switching and Circuit switching. Framing. Error detection and Error correction. Cyclic Redundancy Check (CRC). Automatic Repeat reQuest (ARQ). Media Access Control (MAC) sublayer. Ethernet. Wireless LANs and Wireless WANs. Virtual LANs. Spanning Tree Protocol (STP). Bluetooth.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

COMP2245 - WEB DEVELOPMENT CONCEPTS, TOOLS AND PRACTICES (3 Credits)

Pre-requisite: COMP1170 Entrepreneurship for Computer Scientists OR SWEN1005 Mobile Web Programming

Anti-requisite: COMP2155 Building Web Applications

Syllabus: Overview of Web concepts (TCP/IP, HTTP and HTTPS). The client-server computing model. Web browser architecture. User interface: Visual design and user interaction concepts. Web development stack. Single-, two- and three-tier application architectures. Data validation and verification. Server and application configuration. Relative and absolute paths. Web-accessible directories. Server and application configuration directives. Designing and implementing a three-tier Web application architecture. Client-side programming using JavaScript. Server-Side Scripting.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Method of Examination:

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

COMP2410 - COMPUTING IN THE DIGITAL AGE (3 Credits)

Pre-requisite: COMP1210 Computing II

Syllabus: Ethics. Computer history. Computer organisation. Usability. Software engineering and software reliability. Parallel computing. Digital data and copyright. Software as intellectual property. Artificial intelligence. Big Data. Massive open online courses (MOOCs). Crowd computing. Wearable computing. Computational X (biology, photography, psychology).

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.

Method of Examination:

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

COMP2415 - INFORMATION TECHNOLOGY ENGINEERING (3 Credits)

Pre-requisite: COMP1210 Computing II

Syllabus: Introduction to Statistical Mathematics. Web Analytics - Log file analysis, Page-tagging. Introduction to Computer Architecture - Motherboards, Processors, Memory, Peripherals, Storage Mediums (IDE, SATA, SCSI, USB, FireWire, IEEE 1394, RAID, NAS, SAN). Virtualization. Introduction to Computer Networks - RJ11, RJ45, Fiber, Wi-Fi, LANs, WANs, DHCP, DNS, VPN. Introduction to Servers - Web Servers (Apache, TomCat, JBOSS, IIS), FTP Servers, Email Servers, Proxy Servers. Version Control - Subversion, GIT. Cloud Computing.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

COMP2611 - DATA STRUCTURES (3 Credits)

Pre-requisites: COMP1210 Computing II AND COMP1215 UNIX

Anti-requisite: COMP2115 Information Structures

Syllabus: Abstract Data Types (Lists, Queues, Double-ended queues, Priority queues, Stacks); Dictionaries (Binary search trees, AVL-trees, Red-Black trees, Splay trees, Binary heaps, B-trees); Sets; Vectors; Hashing and collision resolution schemes; Sorting algorithms; Searching techniques; Data compression.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

COMP2950 - COMPUTER SCIENCE ELECTIVE (3 Credits)

Pre-requisites: Depends on Institution offering course

Syllabus: An advanced course in Computer Science taken as an exchange student at an approved institution and pre-approved by the Dean. The course content will depend on the specific course delivered at the host institution.

Teaching: Depends on Institution offering course.

Method of Examination: Depends on Institution offering course.

LEVEL III COMPUTER SCIENCE COURSES

COMP3310 - ALGORITHMS (3 Credits)

Pre-requisites: COMP2210 Mathematics for Computer Science II AND COMP2611 Data Structures

Anti-requisite: COMP3180 Algorithm Design and Analysis

Syllabus: Analysis of Algorithms: Time and Space Complexities. Algorithm Design Techniques (Brute-force, Divide and Conquer, Preprocessing, Dynamic Programming, Greedy Algorithms). Limits of Computability (Lower Bounds, Tractable and Intractable Problems, Dealing with NP-Completeness). Empirical measurements of performance.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Tests/Assignments	40%
Final Theory Examination (2 hours)	60%

COMP3320 - DESIGN PRINCIPLES OF OPERATING SYSTEMS (3 Credits)

Pre-requisites: COMP2220 Computer System Architecture AND COMP2611 Data Structures

Anti-requisite: COMP3100 Operating Systems

Syllabus: Characteristics of Modern Operating Systems. Operating System Structure and Architecture. Process Management (processes and threads, process creation and termination, process synchronization, CPU scheduling, deadlocks). Memory Management (memory allocation schemes, memory partitioning, paging, virtual memory, segmentation). File management (file organization, file system implementation, file system examples, mass storage). Device Management (I/O devices, device drivers, I/O design issues, disk-scheduling). Protection and Security (security threats (program and network threats), protection mechanisms, trusted systems).

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.

Method of Examination:

In-course Tests/Assignments	40%
Final Theory Examination (2 hours)	60%

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

COMP3330 - DATABASE MANAGEMENT SYSTEMS I (3 Credits)

Pre-requisite: COMP2611 Data Structures

Anti-requisite: COMP3160 Database Management Systems

Syllabus: Precursors to Relational Databases. Requirements Gathering, Database Design and ERDs. Normalization – Closures, Functional Dependencies and Keys, Joins and decomposition, Integrity constraints. Introduction to SQL. Database maintenance. Stored Procedures, Transactions and Triggers. Database drivers.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	40%
---------------------------------	-----

Final Theory Examination	60%
--------------------------	-----

COMP3360 - NETWORKS II (3 Credits)

Pre-requisite: COMP2235 Networks I

Anti-requisite: COMP3155 Computer Networks II

Syllabus: Routing. Router Design and Implementation. Routing algorithms. Internet Protocol (IP). Subnets. Internet Control Message Protocol (ICMP). Internet Group Management Protocol (IGMP). Sockets. Socket programming. Transmission Control Protocol (TCP). User Datagram Protocol (UDP). Stream Control Transmission Protocol (SCTP). Congestion control. Congestion control algorithms. Quality of Service (QoS).

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	40%
---------------------------------	-----

Final Theory Examination	60%
--------------------------	-----

COMP3370 - SOFTWARE ENGINEERING ON A LARGE SCALE (3 Credits)

Pre-requisites: COMP2225 Software Engineering

Anti-requisite: COMP3140 Software Engineering II

Syllabus: The Challenges of Engineering Large Systems. Introduction to Modelling and Class Diagrams; Reverse engineering. Software Architecture. Approaches to Project Management. Project Selection and Feasibility Analysis. Project Cost Estimation. Planning, Resource Scheduling and Control Techniques. Software Validation and Deployment. The Team Environment.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Tests/Assignments	100%
-----------------------------	------

COMP3375 - SOFTWARE TESTING AND QUALITY (3 Credits)

Pre-requisites: COMP2225 Software Engineering

Anti-requisite: COMP3165 Software Quality Assurance

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Syllabus: What Is Software System Quality? Software Quality Product We would like to participate if there is still time to do so and will welcome your creative guidance on completing the ad.

and Process Metrics. Measuring and Analysing Customer Satisfaction Fundamentals. The Objectives and Limits of testing. Test Types and the Software Development Process. Reporting and Analysing Errors. Specific Testing Skills. The Problem Tracking System; Test Case Design. Testing Tools. Test Planning and Test Documentation.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Tests/Assignments	40%
Final Theory Examination (2 hours)	60%

COMP3385 - FRAMEWORK DESIGN FOR ADVANCED WEB DEVELOPMENT (3 Credits)

Pre-requisites: COMP2245 Web Development Concepts, Tools and Practices

Anti-requisite: COMP3170 Web-based Applications

Syllabus: Design Patterns (Design patterns and principles, Design Patterns for flexible object programming, Database patterns, Design patterns in JavaScript); Version Control (Configuring and using open source version control systems); Web Services (Introduction to SOAP and XML-RPC, The REST architectural style, RESTful web services); API Design (The API design process, Characteristics and guidelines for API design); Client-side JavaScript framework design (Framework styles: structure, helper methods, plugins etc., Prototype classes, inheritance, class implementation, Selector Engines, Animations and touch, Cross-domain requests with AJAX, Feature detection, Chained APIs); Server-side framework design (Framework styles: layered, pipe-and-filter, Common framework features: scaffolding, internationalization, fall-back data validation, session management; Web services; Controllers; Data abstraction; Templating systems (themes); security; authentication; error handling).

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Tests/Assignments	40%
Final Theory Examination (2 hours)	60%

COMP3412 - SCALABLE ENTERPRISE WEB APPLICATIONS (3 Credits)

Pre-requisites: COMP3330 Database Management Systems I AND COMP3385 Framework Design for Advanced Web Development

Syllabus: Design patterns for flexible object-oriented programming; Enterprise design patterns. Good and bad design and coding practices. Continuous integration. Designing scalable web applications (Scalability patterns and best practices, Scalability challenges, Scalability testing and anti-patterns). Caching for web applications (Caching concepts, design, caching anti-patterns and strategies). Enterprise Web Applications Security. Enterprise Web Application Testing; Application Deployment to the cloud. Performance of Enterprise Web Applications. Web analytics-based performance improvement.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Method of Examination:

In-course Tests/Assignments	40%
Final Theory Examination (2 hours)	60%

COMP3415 - DATABASE MANAGEMENT SYSTEMS II (3 Credits)

Pre-requisite: COMP3330 Database Management Systems I

Syllabus: Physical Data Access Methods. Query Processing and Optimization. Concurrency Control, Recovery. Client Server and Distributed Databases - Failures in a Distributed Environment, Commit Protocols, Replication. Data Warehousing and Online Analytical Processing - Operational Data versus Decision Support Data, Decision Support Database Requirements, Components of a Decision Support System. Data Lakes and Data Vaults. Data Vault Modelling. Big Data Databases and NoSQL. Data mining.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

COMP3420 - COMPUTER GRAPHICS (3 Credits)

Pre-requisites: COMP2611 Data Structures

Anti-requisite: COMP3260 Computer Graphics I

Syllabus: Raster graphics; Coordinate systems and transformations. The viewing frustum. The graphics pipeline and toolkits. Clipping and culling. Lighting and shadows. Transparency and blending. Texture mapping. Local shading models. Environment mapping techniques. Shaders. Animation and particles. Portable Network Graphics (PNG) programming; OpenGL programming.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Tests/Assignments	40%
Final Theory Examination (2 hours)	60%

COMP3435 - USER-INTERFACE DESIGN (3 Credits)

Pre-requisites: COMP2611 Data Structures AND COMP2225 Software Engineering

Anti-requisite: COMP3220 Human Computer Interaction

Syllabus: Relationship to computer science and software engineering. Influences on interface design. General models and guidelines. Methods of designing interfaces. Software and hardware interface implementation. Mechanisms of evaluation. Future directions of user interface design.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignments	40%
-------------------------------	-----

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Final Theory Examination (2 hours)	60%
------------------------------------	-----

COMP3440 - E-COMMERCE (3 Credits)

Pre-requisites: COMP2245 Web Development Concepts, Tools and Practices

Anti-requisite: COMP3210 Electronic Commerce

Syllabus: Introduction to e-commerce. Definition of e-commerce, e-business, m-commerce and e-governance. Advantages/disadvantages of e-commerce. Waves of e-commerce. SWOT analysis. business objectives and international issues facing e-commerce. Planning e-commerce initiatives. Identifying products and services. Business plans. E-Commerce legislation and Internet law; Borders and jurisdiction. Website design, usability, evaluation and creation. User interface design. Internetworking and the world wide web. client-side programming. server-side programming. Processing payments and order fulfilment. Securing e-commerce initiatives. Computer, server and communication channel security. Marketing website and promoting products and services. Revenue models, marketing strategies, customer relationship models and web advertising.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignments	40%
-------------------------------	-----

Final Theory Examination (2 hours)	60%
------------------------------------	-----

COMP3445 - COMPUTER INFORMATION SYSTEMS (3 Credits)

Pre-requisites: COMP2225 Software Engineering AND COMP2245 Web Development Concepts and Practices

Anti-requisite: COMP 3115 Information Systems

Syllabus: Definitions of information and system concepts. IS frameworks. Types of information systems. Information systems in society, business and industry. Software issues and trends: Databases and business intelligence. E-business and mobile commerce. ICT in e-business and business process performance. The personal and social impact of computers. Network and telecommunication systems. Societal and ethical issues relating to information systems. Enterprise, information and decision support systems. Knowledge management systems, knowledge management workers. Artificial intelligence, expert systems, and virtual reality. Characteristics of information systems professionals; information system careers. Information and specification; design, implementation and re-engineering of information systems. Systems theory, decision support, information systems strategies, role of information and IT, and role of people using, developing and managing systems. Information and organisational systems. ICT Micro enterprises and entrepreneurship. The digital divide, the informal sector. Health information systems.

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.

Method of Examination:

In-course Tests/Assignments	40%
-----------------------------	-----

Final Theory Examination (2 hours)	60%
------------------------------------	-----

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

COMP3450 - FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE (3 Credits)

Pre-requisites: COMP2210 Mathematics for Computer Science II AND COMP2611 Data Structures

Anti-requisite: COMP3125 Artificial Intelligence

Syllabus: Intelligent agents. Search algorithms. Knowledge representation. Machine learning. Probabilistic reasoning.

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.

Method of Examination:

In-course Test(s)/Assignment(s)	40%
Final Theory Examination	60%

COMP3490 - RESEARCH PROJECT IN COMPUTER SCIENCE (3 Credits)

Pre-requisite: Students must have completed ALL Level II courses required for a major in Computer Science or Information Technology. By permission of the Department.

Anti-requisite: COMP3910 Research Project, COMP3499 Group Research Project in Computer Science or COMP3495 Major Research Project in Computer Science.

Syllabus: This course provides students with the opportunity to develop a research project to solve a real-world or research-based problem. Students are given the opportunity to embark on a project that uses the skills learned during Computer Science courses. This course provides students with an opportunity to develop their research skills by collaborating with a Computer Science faculty member.

Registration: Students are required to send an email to cmpcompscicoordinator@cavehill.uwi.edu requesting registration.

Teaching: Students are required to meet regularly with their supervisors to discuss their research projects.

Method of Examination:

Project Proposal	20%
Final Presentation	20%
Final Report	60%

COMP3495 - MAJOR RESEARCH PROJECT IN COMPUTER SCIENCE (6 Credits)

Pre-requisite: Students must have completed ALL Level II courses required for a major in Computer Science or Information Technology. By permission of the Department.

Anti-requisite: COMP3920 Computer Science Major Research Project, COMP3490 Research Project in Computer Science or COMP3499 Group Research Project in Computer Science.

Syllabus: This course provides students with the opportunity to develop a research project to solve a real-world or research-based problem. Students are given the opportunity to embark on a project that uses the skills learned during Computer Science courses. They will take this course from Semester I through Semester II. This course provides students with an opportunity to develop their research skills by collaborating with a Computer Science faculty member.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Registration: Students are required to send an email to cmpcompscicoordinator@cavehill.uwi.edu requesting registration.

Teaching: Students are required to meet regularly with their supervisors to discuss their research projects.

Method of Examination:

Project Proposal	20%
Final Presentation	20%
Final Report	60%

COMP3499 - GROUP RESEARCH PROJECT IN COMPUTER SCIENCE (3 Credits)

Pre-requisite: Students must have completed ALL Level II courses required for a major in Computer Science or Information Technology. By permission of the Department.

Anti-requisite: COMP3930 Computer Science Group Research Project, COMP3490 Research Project in Computer Science or COMP3495 Major Research Project in Computer Science.

Syllabus: This course provides students with the opportunity to develop a research project to solve a real-world or research-based problem. Students are given the opportunity to embark on a project that uses the skills learned during Computer Science courses. They will complete the project in groups ranging from 2 to 4 persons. This course provides students with an opportunity to develop their research skills by collaborating with a Computer Science faculty member.

Registration: Students are required to send an email to cmpcompscicoordinator@cavehill.uwi.edu requesting registration.

Teaching: Students are required to meet regularly with their supervisors to discuss their research projects.

Method of Examination:

Project Proposal	20%
Final Presentation	20%
Final Report	60%

COMP3955 - COMPUTER SCIENCE INTERNSHIP (3 Credits)

Pre-requisite: GPA of 3.0 or above in the Computer Science or Information Technology Major. The student must have completed or be enrolled in courses totalling 60 credits or more. The department must approve the student. Approval by the department does not however guarantee placement. Enrolment in internship is subject to successful placement at a participating host organization.

Objectives: To provide the opportunity for students to gain workplace experience to improve their employment readiness by the time of graduation.

Syllabus: The course provides a formal internship of at least 4 weeks (160 hours) duration at a relevant private sector, public sector or non-Governmental organisation during which students undertake agreed upon activities relevant to their studies. Students will work under the guidance of a workplace supervisor as well as an on-campus supervisor and will submit a report and make a presentation within the Department at the end of the internship. Through exposure to the working environment, students will acquire transferable skills that

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

will be useful in any future employment sphere. The professional placement in an organisation will normally take place during the summer school period, and students will be registered for the course as a summer school course. Students intending to register for the course in summer must present an up-to-date curriculum vitae (CV) to the course coordinator by a stated deadline in semester 2. At the same time, host organisations will meet with the course coordinator and provide a summary of possible activities (work plan) successful students would undertake in their organisation. Student CVs will be circulated to potential workplace supervisors and the course coordinator will assign placements to the mutual satisfaction of the students and host organisations. Students may have to attend an interview before embarking on the professional placement.

Method of Examination:

Student's Placement Report	50%
Workplace Supervisor's Appraisal	35%
Oral presentation of report	15%

SOFTWARE ENGINEERING COURSES

LEVEL I SOFTWARE ENGINEERING COURSES

SWEN1000 - AN INTRODUCTION TO COMPUTING I (3 Credits)

Pre-requisite: None

Syllabus: History of programming languages. Brief survey of programming paradigms. The Python programming language. Building Abstractions. Computational Processes. Primitive Operations. Special Forms for naming. Conditional execution. Procedures as sequences of operations. Recursion and Iteration. Lexical scoping and Nested Procedures. Higher-order procedures. Customising Procedures with procedural arguments. Creating new functions at run-time. Compound Data.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	50%
Final Theory Examination	50%

SWEN1001 - AN INTRODUCTION TO OBJECT ORIENTED PROGRAMMING (3 Credits)

Pre-requisites: SWEN1000 An Introduction to Computing I AND SWEN1009 An Introduction to Computing II

Syllabus: Objects and classes. Methods and message passing. Instance and class variables. Encapsulation and information-hiding. Imperative control structures: assignment/state, parameter passing models. Primitive types: Inheritance, polymorphism, class hierarchies. Object composition. Abstract and concrete classes and interfaces. Templates using APIs, and class libraries. Array and string processing. I/O processing. Concept of object references and aliases. Collection classes and Iterators. Object-Oriented Testing. Debugging tools. Graphics and GUI Programming. Web Concepts and Objects. Event-driven programming. Exception handling. Use of simple graphical libraries, and simple animation programming.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	50%
Final Theory Examination	50%

SWEN1002 - COMPUTING IN SOCIETY (3 Credits)

Pre-requisite: None

Syllabus: History of computing. Overview of modern computing. Social context of computing. Professional ethics in computing. Risks of computing products.

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.

Method of Examination:

In-course Test(s)/Assignment(s)	50%
Final Theory Examination	50%

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

SWEN1003 - CURRENT AND FUTURE TRENDS IN COMPUTING FOR SOFTWARE ENGINEERS (3 Credits)

Pre-requisite: None

Anti-requisite: None

Syllabus: Grand Challenges in Computing. Organic Computing. Hardware-/Software-Architecture and Tools for Massively Parallel and Grid Systems. Hardware-/Software-Architectures and Tools for Multi-Core and Many-Core Processors. Future Communication Networks. Ambient Assisted Living. Computing for Health. The Web of Things. Web 3.0. Cloud computing. Machine learning, Computer Vision & Image Processing. Massively Online. Information Systems. Service Robots. Smart Mobility. No Touch Interfaces. Cyber Security. Big Data Visualisation. 5G Technologies. Mobile Commerce. Biometrics. Next Generation Mobile OS. Data mining. Analytics.

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.

Method of Examination:

In-course Test(s)/Assignment(s)/Research paper	70%
Final Theory Examination	30%

SWEN1004 - MATHEMATICS FOR SOFTWARE ENGINEERS (3 Credits)

Pre-requisite: None

Syllabus: Propositional logic. Logical connectives. Truth tables. Normal forms (conjunctive and disjunctive). Validity. Predicate logic. Universal and existential quantification. Modus ponens and modus tollens. Limitations of predicate logic. Functions (surjections, injections, inverses, composition). Relations (reflexivity, symmetry, transitivity, equivalence relations). Sets (Venn diagrams, complements, Cartesian products, power sets). Pigeonhole principle. Cardinality and countability. Finite probability space, probability measure, events. Conditional probability, independence. Trees. Undirected graphs. Directed graphs. Spanning trees/forests.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	50%
Final Theory Examination	50%

SWEN1005 - MOBILE WEB PROGRAMMING (3 Credits)

Pre-requisite: None

Syllabus: Mobile web pages and content. Use of HTML to create mobile applications. Comparison of native with browser-based applications. Use of style sheets for mobile web applications. Offline API. Geolocation. Use of JQuery/JavaScript to create application. Wrappers to send HTML applications to the app stores. Design/User experience for mobile web applications/mobile web pages. Creating web pages using HTML/CSS/JavaScript. Mobile web development frameworks.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	100%
---------------------------------	------

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

SWEN1006 - RESEARCH METHODS FOR SOFTWARE ENGINEERS (3 Credits)

Pre-requisite: None

Syllabus: Plagiarism vs. software reuse. Academic dishonesty. Institutional review boards. Research ethics. Copyright & intellectual property. Research/project proposals. Research designs. Information literacy. Using Microsoft Excel and SPSS. Microsoft VBA macro programming. Statistical tests. Research instruments. Double blind studies. The peer review process. Academic publications and the research publication process. Library information systems.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)/Research paper	100%
--	------

SWEN1007 - SOFTWARE ENGINEERING ESSENTIALS (3 Credits)

Pre-requisite: None

Syllabus: Dynamics of working in teams and groups. Reports, evaluations and justifications. Presentation skills. Dealing with multicultural environments. Individual cognition, limits and boundaries. Accreditation, certification, and licensing. Codes of ethics and professional conduct. Nature and role of software engineering standards. Employment contracts, types, negotiation, rates, legal considerations. Common responsibilities. Value considerations throughout the software life cycle. Software engineering basics. Software product basics, input, output, robustness. Operating system basics. Data storage. Database fundamentals. Software engineering careers. Characteristics of successful/unsuccessful software engineering projects. Engineering foundations. Measurement and metrics. Theory of measurement. Engineering design. Software quality concepts, models and assurance methods. Software quality metrics. Product quality attributes. Software reliability. Configuration control.

Teaching: Two (2) hours of lectures and one (1) hour of tutorial per week.

Method of Examination:

In-course Test(s)/Assignment(s)	60%
Final Theory Examination	40%

SWEN1008 - TECHNICAL WRITING FOR SOFTWARE ENGINEERS (3 Credits)

Pre-requisite: SWEN1006 Research Methods For Software Engineers

Syllabus: Passive versus active voice. Technical language. Peer reviews. Document inspections and walkthroughs. Inline and prologue code documentation. APIs. XML, DTDs and Style sheets. Modular writing. Understanding audiences. Types of documents. Documentation tools. Writing from user- and task-oriented perspectives. Style guide, templates & layouts. Working with reviewers. Software engineering personas. Ethical writing.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)/Project paper	100%
---	------

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

SWEN1009 - AN INTRODUCTION TO COMPUTING II (3 Credits)

Pre-requisite: SWEN1000 An Introduction To Computing I

Syllabus: Further use of the Python programming language. Building Abstractions. Compound Data: Lists and Trees. Abstract Data Types. Controlling Interactions. Generic operations. Self-Describing Data. Message Passing. Streams and Infinite Data Structures. Object-oriented Programming.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	50%
Final Theory Examination	50%

LEVEL II SOFTWARE ENGINEERING COURSES

SWEN2000 - AN INTRODUCTION TO REQUIREMENTS ENGINEERING (3 Credits)

Pre-requisites: SWEN1007 Software Engineering Essentials AND SWEN2001 An Introduction to Software Engineering

Syllabus: Interacting with stakeholders. Dealing with uncertainty and ambiguity. Negotiation. Requirements attributes. Cognitive problem complexity. Elicitation tools and techniques. Requirements evolution. Prioritization and analyses. Evaluating cost-effective solutions. Benefits realization. Analysing requirements. Safety, security, usability and performance. Validating product quality. Formal analysis. Requirements documentation. Types, audience, structure, quality. Contemporary standards and best practices. Software requirements specification techniques. Decision tables, user stories, UML, Volere, behavioural specifications, goal-driven. Security in requirements analysis and specification. Requirements engineering tools and metrics.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	60%
Final Theory Examination	40%

SWEN2001 - AN INTRODUCTION TO SOFTWARE ENGINEERING (3 Credits)

Pre-requisite: SWEN1001 An Introduction to Object Oriented Programming

Syllabus: Software Design. Using APIs. Tools and Environments. Software Processes. Requirements Specifications. Software Verification and Validation. Software Evolution. Software Project Management. Professional Ethics. Risk assessment and management.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	60%
Final Theory Examination	40%

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

SWEN2002 - AN INTRODUCTION TO THE ANALYSIS OF ALGORITHMS (3 Credits)

Pre-requisites: SWEN1000 An Introduction to Computing I AND SWEN1001 An Introduction to Object Oriented Programming AND SWEN1004 Mathematics for Software Engineers AND SWEN1009 An Introduction to Computing II

Syllabus: Analysing algorithms. Solving recurrence equations with the Master Theorem. Algorithm strategies: brute-force, greedy, divide and conquer, branch-and-bound, heuristic. Iterated approximations: Newton-Raphson method, searching for roots of a polynomial. Fast exponentiation, Euclid's algorithm, Discrete logarithm, RSA cryptography. Heaps as implementations for priority queues. Sorting. Binary search trees, Red-Black trees. Hashing. Graphs and graph algorithms. Distributed computing: consensus vs. election algorithms. NP-completeness. Basic computability: uncomputable functions, the halting problem, implications of uncomputability.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	50%
Final Theory Examination	50%

SWEN2003 - COMPUTER NETWORKING & SECURITY (3 Credits)

Pre-requisite: None

Syllabus: Background and history of network and the Internet. Network architectures. Networks and protocols. Client/server and peer-to-peer paradigms. Mobile and wireless computing. Network Communication. Network standards and standardization bodies. The ISO 7-layer reference model and its instantiation in TCP/IP. Overview of physical and data link layer concepts. Data link layer access control concepts. Internetworking and routing. Transport layer services. Web protocols with particular emphasis on HTTP. Distributed computing. Network Security. Fundamentals of cryptography. Secret-key algorithms. Public-key algorithms. Authentication protocols. Network attack types. Intrusion detection. Firewalls. Detection of malware. Kerberos. IPSec. Virtual Private Networks. Network Address Translation.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	50%
Final Theory Examination	50%

SWEN2004 - COMPUTER ORGANISATION (3 Credits)

Pre-requisites: SWEN1000 An Introduction to Computing I AND SWEN1001 An Introduction to Object Oriented Programming AND SWEN1004 Mathematics for Software Engineers AND SWEN1009 An Introduction to Computing II

Syllabus: Data Representation and Digital Logic. The Microarchitecture Level. Instruction Set Architectures. Peripherals and Protocols. Memory. Input/Output Devices. Parallelism. Amdahl's law.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Method of Examination:

In-course Test(s)/Assignment(s)	50%
Final Theory Examination	50%

SWEN2005 - DATABASE SYSTEMS (3 Credits)

Pre-requisites: SWEN1000 An Introduction to Computing I AND SWEN1009 An Introduction to Computing II AND SWEN2003 Computer Networking & Security

Syllabus: Entity models. Relational design. Mapping designs to implementations. Normalisation and de-normalisation. Database languages. Developing applications with appropriate database portal tools. Database system architecture - relational, network, hierarchical, object oriented. Database reliability, integrity and concurrency control. Introduction to client server web databases using ASP/PHP. Introduction to XML and related database technologies. Database and client/server-side application security.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)/Project	100%
---	------

SWEN2006 - DISCRETE MATHEMATICS FOR SOFTWARE ENGINEERS (3 Credits)

Pre-requisite: SWEN1004 Mathematics for Software Engineers

Syllabus: Arithmetic and geometric progressions. Fibonacci numbers. The pigeonhole principle. Basic definitions. Pascal's identity. The binomial theorem. The Master theorem. Limits. Orders of Growth (Big-oh O, Omega Ω and Theta Θ). Trees. Planarity. Eulerian and Hamiltonian Cycles. Matching and Colouring. Counting in event space. Probability Tree. Probability distributions. Finite probability space, probability measure, events. Conditional probability, independence, Bayes' theorem. Integer random variables, expectation. Law of large numbers. Convergence Properties. Convolution. Applications. Automata, Grammars and Languages.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	50%
Final Theory Examination	50%

SWEN2007 - OBJECT ORIENTED DESIGN AND IMPLEMENTATION (3 Credits)

Pre-requisite: SWEN2001 An Introduction to Software Engineering

Syllabus: Encapsulation. Information hiding. Inheritance. Composition. Polymorphism. Object-oriented analysis and design. Design patterns. Component-level design. Design for reuse. Reference software architectures. Aspect oriented, Service oriented and agile approaches. Use of open-source materials. Building components with/for reuse. Interfaces. Component assembly. Design of APIs. Class browsers and related tools. Basic concepts of formal specification techniques. Black-box, grey-box and white-box testing techniques. Object-Oriented testing. Component testing. Design, build and use wrappers.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	60%
Final Theory Examination	40%

SWEN2010 - BEGINNER CHINESE LANGUAGE

Syllabus: Describe the geography of China; State the different types of Chinese cuisine; Recognise Chinese traditional musical instruments, opera and dance; Recognise Chinese calligraphy and traditional painting; Trace Chinese traditional festivals and customs; Discuss Chinese tea culture; Discuss Chinese movies; Summarise the history of China; Use 150 common Chinese words and basic grammar patterns; Use basic Chinese characters and sentences to communicate.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	70%
Final Theory Examination	30%

SWEN2011 - BEGINNER CHINESE LANGUAGE AND IT BUSINESS ENVIRONMENT

Syllabus: Describe the Chinese political system; Use 300 common Chinese words and basic grammar patterns; Use basic Chinese characters and sentences to communicate; Use basic Chinese IT jargon; Examine the Chinese legal system; Examine historic and recent trends in science and technology in China; Examine China's infrastructure; Examine the traditions, culture and practices governing business in China; Compare and contrast the Chinese and Caribbean education systems; Analyse the economy of China.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	70%
Final Theory Examination	30%

SWEN2013 - ELEMENTARY CHINESE CULTURE AND LANGUAGE (3 Credits)

Pre-requisites: CHIN1001 Chinese Language 1A and CHIN1002 Chinese Language 1B

Syllabus: Chinese words and phrases at the HSK 3 Level, Social Communication, Sport and Health, Entertainment, Chinese Culture.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	70%
Final Theory Examination	30%

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

SWEN2014 - INTERMEDIATE CHINESE CULTURE AND LANGUAGE (3 Credits)

Pre-requisites: CHIN1001 Chinese Language 1A, CHIN1002 Chinese Language 1B, SWEN2013 Elementary Chinese Culture and Language

Syllabus: Chinese words and phrases at the HSK 4 level, Chinese politics and foreign policies, Chinese legal system, Chinese economic environment, Chinese science and technology, Chinese infrastructure (e.g., road, rail, electricity and telecommunications), Chinese organisation behaviours.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

In-course Test(s)/Assignment(s)	70%
Final Theory Examination	30%

LEVEL III SOFTWARE ENGINEERING COURSES

SWEN3000 - APPLICATION DEVELOPMENT FOR IOS DEVICES (3 Credits)

Pre-requisite: SWEN2007 Object Oriented Design and Implementation

Anti-requisite: COMP3425 Mobile Applications for iOS Devices

Syllabus: Programming in Swift. Building applications for iOS with the Cocoa Touch. Framework. Mobile Application Design for iOS. The iOS Framework. Handling Data on iOS. Programming with Device APIs. Multitasking on mobile platforms. Deploying Applications to the Apple App Store.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination:

iOS Application	50%
Report for the iOS application	30%
Oral presentation	20%

SWEN3001 - ANDROID APPLICATION DEVELOPMENT I (3 Credits)

Pre-requisites: SWEN2007 Object Oriented Design and Implementation AND SWEN2005 Database Systems

Syllabus: Android platform and architecture. Android user interface, layouts, views and GUI controls. Menus, Action Bar Menus, Toasts. Adapters, Dialogs, Intents. Storing and Retrieving Data: internal and external storage, preferences, SQLite Database. File Storage. Content Providers. Fragments. Developing for the Android marketplace. Java Programming. The Object class and its methods. Wrapper classes for primitive types. Inner and nested classes. The String, StringBuffer and String Tokeniser classes, String processing. Handling files, input, output and serialisation, building database applications with JDBC. Localisation and Internationalisation, processing dates and time. Regular expressions. Exception handling and assertions. Multithreading and concurrency. Java collections framework. Graphical User Interface development using swing. Java 5 features such as enumerations, enhanced for loop, formatted output, Scanner autoboxing and unboxing of primitives, generic types, variable-length argument lists. JDK tools and deploying applications.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Method of Examination:

Android application	60%
Report for the Android application	30%
Oral presentation	10%

SWEN3002 - Android Application Development II (3 Credits)

Pre-requisite: SWEN3001 Android Application Development I

Syllabus: Android Application Components: activities, broadcast receivers, services, notification manager; Mobile Web Applications: web apps overview, targeting screens from web apps, webview, debugging web apps, best practices for web apps; Best Practices for Android Development: compatibility, supporting multiple screens, optimizing for other android versions; Asynchronous Tasks: main UI thread, using AsyncTask; Accessing Remote Services: HTTP, DOM Parsing, SAX Parsing, JSON Parsing, android and distributed agent software systems; Server side concepts; Client access to software agent system; Connectivity using for example Bluetooth, NFC, Wireless; Testing strategies.

Teaching: Two (2) hours of lectures and two (2) hours of labs per week.

Method of Examination: The course will be assessed by means of 100% coursework as follows:

Programming assignments (3)	50% (10, 10, 30)
Report (individual) (critical appraisal of programming exercises)	30%
Quizzes (2)	20% (10, 10)

SWEN3003 - Web & Mobile Application Development I (3 Credits)

Pre-requisites: SWEN1005 Mobile Web Programming, SWEN2007 Object Oriented Design and Implementation, AND SWEN2005 Database Systems

Syllabus: The Web, Web application architectures (e.g., MVC), Interface design for web applications, Server-side components (e.g., Java servlets, Java Server Pages), Manipulating a relational database from within a Java program, including PL-SQL and stored procedures, Session management, Scopes, Scope attributes, Request dispatching, Java application clients, Design patterns for web applications and data sources, Overview other frameworks (e.g. JavaServer Faces, Struts).

Teaching: One (1) hour of lecture and four (4) hours of labs per week.

Method of Examination:

Course Work	100%
-------------	------

SWEN3004 - Web & Mobile Application Development II (3 Credits)

Pre-requisite: SWEN3003 Web & Mobile Application Development I

Syllabus: The Android platform, Development environment for Android, Mobile application design, Interface design for mobile applications, Android software stack, Android application lifecycle, Activities & Intents, Services, Broadcast receivers, Content providers, SQLite database, On-phone resources: GPS, Telephony, Audio

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

& video, Sensors, Connectivity, Business application development: an Android app as rich client communicating with a server-side application.

Teaching: One (1) hour of lecture and four (4) hours of labs per week.

Method of Examination:

Course Work	100%
-------------	------

SWEN3120 - Software Architecture (3 Credits)

Pre-requisites: SWEN2000 An Introduction to Requirements Engineering, SWEN2001 An Introduction to Software Engineering AND SWEN2007 Object Oriented Design and Implementation

Syllabus: Software Architecture Concepts - Definition of Software architecture, Architecture Influence Cycle Quality Attributes, Managing the software architecting process (agile, incremental, iterative); Architecture Design and Analysis - Architectural Patterns and Tactics, Software architecture analysis concepts, Quality Attributes Workshop (QAW), Attribute Driven Design (ADD); Architectural Documentation -Principles of sound documentation, Using UML and other methods of documenting architecture, View types, styles and views, Choosing relevant views, Refinement, Interface documentation, Templates, Providing Justification for architecture to clients and developers (presentations and writing); Evaluating Software Architecture - Architecture Trade-off Analysis Method (ATAM), Quality attribute trade-offs, Executing ATAM evaluation.

Teaching: Two (2) hours of lecture and two (2) hours of labs per week.

Method of Examination:

Course Work	60%
Examination	40%

SWEN3130 - PROJECT MANAGEMENT FOR SOFTWARE PROJECTS (3 CREDITS)

Pre-requisite: SWEN2001 An Introduction to Software Engineering

Syllabus: The role of risk in the life cycle: Risk categories including security, safety, market, financial, technology, people, quality, structure and process, Risk identification, Risk tolerance (e.g., risk-adverse, risk-neutral, risk-seeking), Risk planning, Risk removal, reduction and control; Working in teams: Participation, Processes including, responsibilities for tasks, meeting structure, and work schedule in a software team, Team conflict resolution, Virtual teams (communication, perception, structure), Effort Estimation (at the personal level), Team management including organization, decision-making, role identification and assignment, individual and team performance assessment; Project management: Scheduling and tracking, Project management tools, Cost/benefit analysis, Software measurement and estimation techniques, Configuration management and version control, Principles of risk management.

Teaching: One (1) hour of lecture and four (4) hours of labs per week.

Method of Examination:

Course Work	60%
Examination	40%

SWEN3145 - SOFTWARE MODELLING (3 CREDITS)

Pre-requisites: SWEN2001 An Introduction to Software Engineering AND SWEN2007 Object Oriented Design and Implementation

Syllabus: Requirements specification document development: Precisely expressing requirements, Information modelling: entity-relationship modelling, class diagrams; Behavioural modelling: structured analysis, state diagrams, use case analysis, interaction diagrams, failure modes and effects analysis; Structure modelling: architectural, Domain modelling: domain engineering approaches; Functional modelling: component diagrams.

Teaching: Two (2) hours of lecture and two (2) hours of labs per week.

Method of Examination:

Course Work	60%
Examination	40%

SWEN3165 - SOFTWARE TESTING (3 CREDITS)

Pre-requisites: SWEN2001 An Introduction to Software Engineering AND SWEN2007 Object Oriented Design and Implementation

Syllabus: Managing the testing process; Testing principles and techniques: unit, integration, systems, acceptance; Testing types: state based, regression, configuration, compatibility, alpha, beta, and acceptance; Test driven development; Test plan development; Reporting, tracking, and analysis of problems encountered during development.

Teaching: Two (2) hours of lecture and two (2) hours of labs per week.

Method of Examination:

Course Work	60%
Examination	40%

SWEN3920 - CAPSTONE PROJECT (6 CREDITS)

Pre-requisites: SWEN2006 Discrete Mathematics for Software Engineers, SWEN3130 Software Project Management AND SWEN3145 Software Modelling.

Method of Examination:

Project management charter and plan	15%
Software requirements specification	30%
Architecture and design	15%
Software artifacts	30%
Presentation and demonstration of final product	10%

LEVEL IV SOFTWARE ENGINEERING COURSES

SWEN4001 - ADVANCED DATABASE SYSTEMS (3 CREDITS)

Pre-requisite: SWEN2005 Database Systems

Syllabus: Advanced database architectures, N-Tier, Grid Computing, Distributed Databases, Data Models, Relational and Object-Relational technologies, query languages including advanced SQL and Object SQL, Advanced Design and design issues, database development and performance, Current trends in Database development, including knowledge management, web and mobile databases, database issues for complex data including forensic and biometric data, Data mining, Analytics

Teaching: Two (2) hours of lecture and two (2) hours of labs per week.

Method of Examination:

Course work	100%
-------------	------

SWEN4008 - IT CERTIFICATION I (3 CREDITS)

Pre-requisite: None

Syllabus: The course content will depend upon the specific certification/course pursued.

Teaching: The teaching methodologies will be determined by the specific certification body.

Method of Examination: The assessment methodologies will be determined by the specific certification body.

SWEN4050 - SOFTWARE ENGINEERING CAPSTONE PROJECT I (6 Credits)

Pre-requisites: SWEN3130 Software Project Management, SWEN3165 Software Testing, SWEN3002 Android Application Development II, SWEN3000 Application Development for IOS Devices, SWEN3004 Web & Mobile Application Development II

Syllabus: This course is being offered by The UWI China Institute of Information Technology (UWICIIT) as a part of their 2+2 BSc Software Engineering programme (students in this programme will spend the first two years at The UWI and the final two years in China). The UWICIIT is a collaborative effort between The UWI and the Global Institute of Software Technology (GIST) located in Suzhou, China. The UWICIIT is located at four sites, namely at the Cave Hill Campus, the Mona Campus, the St. Augustine Campus and at the Open Campus. The Software Engineering Capstone Project I course is the first of two courses where students will design and build a real-world software product based on the knowledge gained during the course of their studies. In this first course, students, as a part of a group, will be required to identify and document a project idea in the form of a project proposal, then formulate a plan for the entire project duration (both semesters). Adopting an incremental and iterative approach to software development, students will be required to identify requirements, create specifications, create a design, test and release versions of the product several times during the semester. By the end of the first semester (that is, by the end of this course), the project group will have created a project proposal, a project plan, software engineering documents and at least one version of the software product. *Teaching:* Project groups will be supervised by one or more faculty members. In some circumstances, depending on the nature of the project, project groups may be co-supervised by

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

industry/external partners. Students will normally be expected to meet with their supervisor(s) on a weekly basis to discuss progress, determine solutions to obstacles and plan future work. Supervisors will also guide students in the production of the project documentation and software. Private discussion forums will be associated with the course to allow students and supervisors to discuss issues and solutions related to the projects. A public discussion forum targeted at all of the students completing the course will be used to address general class-based issues. MyElearning will be used to: distribute any necessary course materials, post completed assessments, distribute grades and return feedback to students (e.g., from assignments).

Method of Examination: The course will be assessed by means of 100% coursework as follows:

Project Proposal:	10%
Project Plan:	20%
Software Engineering Documentation:	30%
Software Product:	40%

ELECTRONICS COURSES

LEVEL I ELECTRONICS COURSES

ELET1200 - BASIC CIRCUIT ANALYSIS (3 Credits)

Pre-requisite: ELET1220 Introduction to Electronics

Anti-requisite: ELET1100 Circuit Analysis

Syllabus: Direct Current (DC) voltage and current notations, Alternating Current (AC) voltage and current notations, Sinusoids, Phasors, Complex notation, Applications of phasors and complex notation. Mesh Current analysis, Node Voltage analysis, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer, Applications of analysis theorems. Impedance, Mutual inductance, Resonance, Transient Response, Bode plots. Applications of frequency response in AC circuits. Op-Amp operation, Op Amp biasing, Op-Amp circuits (amplifiers, integrators, differentiators, adders, subtractors).

Teaching: Two (2) lectures and two (2) hours of laboratory per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In course test(s) / Assignment(s)	20%
Laboratory	20%

ELET1205 - COMPUTER AIDED DESIGN (3 Credits)

Pre-requisite: None

Syllabus: Definition of a Dynamic Simulation, Definition of Stress Analysis, Techniques of Performing Dynamic Simulations, Techniques of Performing Stress Analysis, Applications of Dynamic Simulations and Stress Analysis. Drawing elevations; 2D and 3D drawings, Design and Analysis Software, Application of Drawing Techniques. Definition of a Sketch, Definition of a Part, Definition of a Feature, Sketch Creation, Part Creation, Feature Creation, Applications. Definition of an Assembly, Object Assembly Techniques, Applications of Assemblies.

Teaching: One (1) lecture and four (4) hours laboratory per week.

Method of Examination:

Final Theory Examination (2 hours)	40%
In course test(s) / Assignment(s)	10%
Laboratory	50%

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

ELET1210 - DIGITAL ELECTRONICS I (3 Credits)

Pre-requisites: CAPE Physics Units 1 & 2, OR CAPE Mathematics Units 1 & 2, AND CSEC Physics or EQUIVALENTS

Anti-requisite: ELET1110 Digital Electronics

Syllabus: The implementation of logical functions using electronic gates and the importance of minimization, using various methods. Binary arithmetic; Number systems; Floating point representation; Binary codes and code conversion; Encoders and Decoders. Digital Building Blocks (flip-flops, counters, data selectors and demultiplexers, binary adders). Logic Families (Bipolar, TTL, FET, MOS, CMOS) and their family characteristics (propagation delay, fan out, power dissipation, noise immunity and packing density). Finite State Device (FSD) design and construction.

Teaching: Two (2) lectures and two (2) hours of laboratory per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In course test(s) / Assignment(s)	20%
Laboratory	20%

ELET1215 - DIGITAL ELECTRONICS II (3 Credits)

Pre-requisite: ELET1210 Digital Electronics I

Syllabus: Shift registers, latches and word clocks. Monostable pulse generators and sequencers. Schmitt trigger. Types of Analog to Digital (ADC) and Digital to Analog (DAC) circuits. Design of Asynchronous Sequential Circuits and hazard analysis. Combining functional blocks together to produce complex, non-programmable devices.

Teaching: Two (2) lectures and two (2) hours of laboratory per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In course test(s) / Assignment(s)	20%
Laboratory	20%

ELET1220 - INTRODUCTION TO ELECTRONICS (3 Credits)

Pre-requisites: CAPE Physics Units 1 & 2, OR CAPE Mathematics Units 1 & 2, AND CSEC Physics or EQUIVALENTS

Anti-requisite: ELET1120 Basic Electronics

Syllabus: Resistors; Capacitors; Inductors; Characteristics of discrete components; Application of discrete components in simple circuits. Diodes; Bipolar Junction Transistors (BJT); Silicon Controlled Rectifiers (SCR); Diodes for Alternating Current (DIAC); Triode for alternating current (TRIAC); Characteristics of discrete components; Applications. Power supply components; Regulator components; Characteristics of simple power supplies and regulators; Applications.

Teaching: Two (2) lectures and two (2) hours of laboratory per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
------------------------------------	-----

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

In course test(s) / Assignment(s)	20%
Laboratory	20%

LEVEL II ELECTRONICS COURSES

ELET2215 - MICROPROCESSORS SYSTEMS (3 Credits)

Pre-requisite: ELET1215 Digital Electronics II

Syllabus: Architecture of 8-bit CPU's e.g., INTEL 8085, Instruction set, Registers and their uses, Operation, Busses, Addressing, Data flow, Control section, Interrupts, Stack, Branching, Subroutines, Loops, Serial I/O, Interfacing, Port and memory mapping, Polling, Handshaking, Parallel ports, Serial communications (RS-232), A/D and basic D/A interfacing, device control with simple examples, comparison with other 8-bit CPU's.

Teaching: Two (2) lectures and two (2) hours of laboratory per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-course Tests/Assignments	20%
Laboratory	20%

ELET2220 - CIRCUIT SIMULATION AND APPLICATIONS (3 Credits)

Pre-requisite: ELET1200 Basic Circuit Analysis

Syllabus: Simple AC & DC circuits and transient analysis, BIAS circuit and AC Sweep analysis, Characteristics of diodes and zener diodes, Diode and zener diode circuits, Characteristics of bipolar transistors, Bipolar transistor circuits, Characteristics of Field Effect transistors, Field Effect transistor circuits, Characteristics of Thyristors, Transistor as a switch, Characteristics of OPAMPS, Operational Amplifier (OP-AMP) circuits, Component tolerances in software, Circuit design with component tolerances.

Teaching: Two (2) lectures and two (2) hours of laboratory per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-course Tests/Assignments	20%
Laboratory	20%

ELET2225 - DISCRETE COMPONENT ELECTRONICS (3 Credits)

Pre-requisite: ELET1200 Basic Circuit Analysis

Syllabus: Diode and Transistor parameters, Various biasing methods for transistors, Modelling (Re and Hybrid) of transistor circuits, Calculating input and output impedances and voltage, current and power gain for common configurations of BJT and FET, Advantages and disadvantages of various other circuits (such as Darlington, cascade, cascode and complementary symmetry) and calculations for these circuits as above, Calculating the effect of RC coupling on bandwidth (high and low frequency response), Oscillator fundamentals (positive and

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

negative feedback and effect on gain, bandwidth and stability), Calculations for transistors used in regulator circuits, Calculations for transistors used in switching circuits.

Teaching: Two (2) lectures and two (2) hours of laboratory per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-course Tests/Assignments	20%
Laboratory	20%

ELET2230 - DIGITAL COMMUNICATIONS SYSTEMS I (3 Credits)

Pre-requisites: ELET1215 Digital Electronics II AND (MATH1190 Calculus A OR COMP1180 Mathematics for Computer Science I OR COMP2235 Networks I)

Syllabus: Digital Communication System Blocks, Performance Criteria, Discrete Memoryless Channel (DMC), Introduction to Error-Control Coding, Information Theory, Shannon's Source Coding Theorem, Huffman Code Source Coding Algorithm, Universal Source Coding Algorithm, Channel Capacity, Shannon's Channel Coding Theorem, Bandpass modulation techniques, Binary Phase Shift Keying (BPSK), BPSK Performance, Quadrature Phase Shift Keying (QPSK), M-ary PSK Modulation (MPSK), Soft-Decision, Information Throughput.

Teaching: Two (2) lectures and two (2) hours of laboratory per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-course Tests/Assignments	20%
Laboratory	20%

ELET2235 - AUTOMATION TECHNOLOGY AND APPLICATIONS (3 Credits)

Pre-requisite: ELET1215 Digital Electronics II

Syllabus: Microcontroller systems and architectures, Programmable Logic Controller (PLC) and Field-Programmable Gate Arrays (FPGA) architectures and systems, Industrial Network Topologies, Distributed Control Systems (DCS) and applications, Supervisory Control And Data Acquisition (SCADA) systems and their applications.

Teaching: Two (2) lectures and two (2) hours of laboratory per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-course Tests/Assignments	20%
Laboratory	20%

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

ELET2240 - SENSORS AND ACTUATION DEVICES (3 Credits)

Pre-requisite: ELET1220 Introduction to Electronics

Syllabus: Measurements of Displacement and Strain, Force and Torque Measurement, Pressure Measurement, Flow Measurement, Measurement of Temperature, Measurement of other non-electrical quantities such as humidity, pH, level, Temperature sensors, Magnetic sensors, Electrical sensors, Mechanical sensors, Acoustic sensors, Optical sensors, Chemical sensors, Image sensors, Biosensors, Electrical actuators, Mechanical actuators, Pneumatic and Hydraulic actuators, Piezoelectric actuators, Polymer actuators, Elements of telemetry and data acquisition systems, Wireless sensors and Networking.

Teaching: Two (2) lectures and two (2) hours of laboratory per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-course Tests/Assignments	20%
Laboratory	20%

ELET2951 - ELECTRONICS EXCHANGE ELECTIVE (3 Credits)

Pre-requisite: Depends on Institution offering course

Syllabus: An advanced course in Electronics taken as an exchange student at an approved institution and pre-approved by the Dean. The course content will depend on the specific course delivered at the host institution.

Teaching: Depends on Institution offering course.

Method of Examination: Depends on Institution offering course.

LEVEL III ELECTRONICS COURSES

ELET3215 - MICROCONTROLLER TECHNOLOGY (3 Credits)

Pre-requisite: ELET2215 Microprocessor Systems

Syllabus: Architecture of 8-, 16- and 32-bit microcontrollers: Hardware, Instruction set, Registers and their uses and operation, Busses, Address and Data Addressing, Data flow, Control section; Microcontroller Peripherals: I/O Ports, Serial and Parallel modules, RS232 module, A/D and D/A modules; Interrupts and Polling, Stack and its operation, Branching, Subroutines, Loops; Serial I/O: Interfacing, Port and memory mapping, Handshaking, Parallel ports; Advanced Microcontroller Features: Direct Memory Access (DMA) peripherals, Real-time Operating System (RTOS) concepts and operation.

Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:

Final Theory Examination (2 hours):	60%
In-Course tests/assignments:	20%
Laboratory:	20%

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

ELET3220 - CONTROL SYSTEMS (3 Credits)

Pre-requisite: ELET2120 Discrete Device Electronics

Syllabus: Introduction to dynamic systems and control, Modelling of physical systems, including linearization, System transfer functions, Analysis of system response, Feedback and multiple subsystems, Stability analysis of a system, Steady state errors, Time response of systems and design specifications, Frequency response techniques and designs specifications, Definition and construction of the Root Locus, Compensation using the Root Locus, Compensations and PID controller implementation.

Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:

Final Theory Examination (2 hours):	60%
In-Course tests/assignments:	20%
Laboratory:	20%

ELET3230 - ESSENTIALS OF DIGITAL SIGNAL PROCESSING DSP (3 Credits)

Pre-requisite: MATH1190 Calculus A OR COMP1180 Mathematics for Computer Science I OR COMP2150 Computer Networks I

Syllabus: Introduction to DSP; Basic Digital Signals; Impulse Response and Convolution; Difference Equations; Fourier Analysis; Fourier Transform; Sampling; Discrete Fourier Transform (DFT); Digital Frequency; Frequency Response; Discrete Time Fourier Transform (DTFT); Parseval's Theorem; Z-Transform; Zeros and Poles; Inverse Z-Transform; Filter Design.

Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:

Final Theory Examination (2 hours):	60%
In-Course tests/assignments:	20%
Laboratory:	20%

ELET3235 - DIGITAL COMMUNICATION SYSTEMS II (3 Credits)

Pre-requisite: ELET2230 Digital Communication Systems I

Syllabus: Introduction to Error-Control Coding; Information Throughput; Information Theory Recap; Shannon's Channel Coding Theorem; Block Codes and Coding Theorem; Linear Block Codes; Cyclic Codes; Convolutional Codes; Viterbi Algorithm; Trellis Coded Modulation (TCM); TCM Decoder; Low Density Parity Check Codes (LDPC) Encoder; LDPC Decoder.

Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:

Final Theory Examination (2 hours):	60%
In-Course tests/assignments:	20%
Laboratory:	20%

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

ELET3240 - DIGITAL COMMUNICATION SYSTEMS III (3 Credits)

Pre-requisite: ELET3235 Digital Communication Systems II

Syllabus: Signals, Phasors, & Spectrum; Exponential Fourier Series; Power and Bandwidth; Fourier Transform; Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT); Additive White Gaussian Noise (AWGN); Power Spectral Density (PSD); Energy Spectral Density (ESD); Band Limited White Noise Analysis; Recap of MPSK; Quadrature Amplitude Modulation (QAM); Orthogonal Frequency Division Multiplexing (OFDM); OFDM Based on QAM; Frequency Shift Keying (FSK); Comparison of Modulation Schemes.

Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:

Final Theory Examination (2 hours):	60%
In-Course tests/assignments:	20%
Laboratory:	20%

ELET3250 - BIOMEDICAL INSTRUMENTATION (3 Credits)

Pre-requisite: ELET2240 Sensors and Actuation Devices

Syllabus: Introduction to Anatomy and physiology: Elementary ideas of cell structure include basic Haematology; Overview of Medical Electronics Equipment: Concepts and components of biosensors and biomedical instrumentation; Preparation of Biosensors: Bimolecular materials used in biosensors and their properties; Types of Biosensors and their applications: Enzyme based biosensors (glucose and cholesterol), micro immuno-biosensors and their characteristics, application of biosensors in the environment, bacterial and viral analysis, food and beverage production and analysis, clinical diagnosis using Photometrics and ElectroChemiluminescence (ECL); Electrodes: Bio-electric signals, electrodes, electrode tissue interface, contact impedance, types of electrodes, electrodes used for ECG and EEG; Bio-Medical Recorders: Block diagram descriptions and applications of typical instruments for ECG, EEG, and EMG machines; Patient Monitoring Systems: Heart, pulse, blood pressure, and respiration rate measurements, principle of the defibrillator and pace mark, use of microprocessor in patient monitoring; Safety Aspects of Medical Instruments: Gross current shock, micro current shock, special designs for safety consideration and standards including biohazardous nature of Biomedical Instrumentation.

Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:

Final Theory Examination (2 hours):	60%
In-Course tests/assignments:	20%
Laboratory:	20%

ELET3255 - WIRELESS COMMUNICATIONS (3 Credits)

Pre-requisites: ELET2225 Discrete Component Electronics AND ELET2230 – Digital Communication Systems I

Syllabus: Harmonic content of complex waveforms; Mixing versus modulation of waveforms; AM, FM and PM of carrier waves and associated sideband spectra produced; Superheterodyne receivers and circuits;

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Transmission lines and antenna principles; Propagation of radio waves, noise limitations, multipath reception; High frequency circuit design techniques for microwave oscillators and amplifiers; Overview of cellular telephone system based on GSM; The multiple access scheme based on OFDM.

Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:

Final Theory Examination (2 hours):	60%
In-Course tests/assignments:	20%
Laboratory:	20%

ELET3260 - ADVANCED MICROPROCESSORS & SYSTEMS (3 Credits)

Pre-requisite: ELET2215 Microprocessor Systems

Syllabus: Architecture: 32-bit architecture; 64-bit architecture; pipelining; multimedia extensions; coprocessors; DMA; Multiprocessors; Hardware processing: Hardware descriptive languages; soft processors; FPGAs; CPLDs; Logic Blocks; Operating Systems: Stack and its operation, Branching, Subroutines, Loops, Realtime Operating Systems, Threads, Processes, Remote Login, Windows, Unix, Linux, Programming languages; Applications & Future Concepts; Embedded systems, Mobile cellular modems, Nanotechnology, Quantum technology.

Teaching: Two (2) hours of lectures and two (2) hours of laboratory sessions each week.

Method of Examination:

Final Theory Examination (2 hours):	60%
In-Course tests/assignments:	20%
Laboratory:	20%

ELET3290 - SEMESTER ELECTRONICS RESEARCH PROJECT (3 Credits)

Pre-requisite: By permission of the Department.

Syllabus: The material will be based on the topic selected.

Teaching: The course is comprised 100% research over a total of forty-eight (48) hours of practical work over the course of twelve weeks.

Method of Examination: Students will be assessed by means of two (2) oral presentations to a general audience and a final written report as follows:

Mid-semester Oral Presentation	10%
Final Oral Presentation	30%
Final Written Report	60%

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

ELET3295 - MAJOR ELECTRONICS RESEARCH PROJECT (6 Credits)

Pre-requisite: By permission of the Department.

Syllabus: The material will be based on the topic selected.

Teaching: The course is comprised of 100% research over a total of ninety-six (96) hours of practical work over the course of twenty-four (24) weeks.

Method of Examination: Students will be assessed using four (4) oral presentations to a general audience and a final written report as follows:

Mid-semester 1 Oral Presentation:	5%
End of Semester 1 Oral Presentation:	10%
Mid-semester 2 Oral Presentation:	5%
Final Oral Presentation:	15%
Final Written Report:	65%

ELET3298 - GROUP ELECTRONICS RESEARCH PROJECT (6 Credits)

Pre-requisite: By permission of the Department.

Syllabus: The material will be based on the topic selected.

Teaching: Limited to groups of 2 or 3 students. The course is comprised of 100% research over a total of ninety-six (96) hours of practical work over the course of twenty-four (24) weeks.

Method of Examination: Students will be assessed using four (4) oral presentations to a general audience and a final written report as follows:

Mid-semester 1 Oral Presentation:	5%
End of Semester 1 Oral Presentation:	10%
Mid-semester 2 Oral Presentation:	5%
Final Oral Presentation:	15%
Final Written Report:	65%

ELET3955 - ELECTRONICS INTERNSHIP (3 Credits)

Pre-requisites: GPA of 3.0 or above in the Electronics Major. The student must have completed or be enrolled in courses totalling 60 credits or more. The department must approve the student. Approval by the department does not however guarantee placement. Enrolment in internship is subject to successful placement at a participating host organization

Objectives: To provide the opportunity for students to gain workplace experience to improve their employment readiness by the time of graduation.

Syllabus: The course provides a formal internship of at least 4 weeks (160 hours) duration at a relevant private sector, public sector or non-Governmental organisation during which students undertake agreed upon activities relevant to their studies. Students will work under the guidance of a workplace supervisor as well as an on-campus supervisor and will submit a report and make a presentation within the Department at the end of the internship. Through exposure to the working environment, students will acquire transferable skills that

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

will be useful in any future employment sphere. The professional placement in an organisation will normally take place during the summer school period, and students will be registered for the course as a summer school course. Students intending to register for the course in summer must present an up-to-date curriculum vitae (CV) to the course coordinator by a stated deadline in semester 2. At the same time, host organisations will meet with the course coordinator and provide a summary of possible activities (work plan) successful students would undertake in their organisation. Student CVs will be circulated to potential workplace supervisors and the course coordinator will assign placements to the mutual satisfaction of the students and host organisations. Students may have to attend an interview before embarking on the professional placement.

Method of Examination:

Student's Placement Report	50%
Workplace Supervisor's Appraisal	35%
Oral presentation of report	15%

MATHEMATICS COURSES

PRELIMINARY MATHEMATICS COURSES

MATH0100 - PRE-CALCULUS (6 Credits)

Pre-requisites: Caribbean Secondary Education Certificate (CSEC) General Proficiency course in Mathematic, AND / OR the CSEC General Proficiency course in Additional Mathematics, OR EQUIVALENT.

Anti-requisite: MATH0102 Preliminary Mathematics 1

Syllabus: Propositions, logical connectives, truth tables and logical equivalence, Properties of binary operations, inequalities, methods of proof and remainder theorem, Exponential and logarithmic functions, indices, laws of logarithms and inverse functions, Domain, range, injective, surjective, equations and inequalities involving simple rational functions and modulus function, Trigonometric functions, identities and equations, Equations of tangents and normal to circles, points of intersection of two curves, parametric representation and Cartesian equation of a curve, Three dimensional representation of vectors, addition and scalar product of vectors, position and unit vectors, length and direction of vector, vector equations of lines and planes, Concept of limits, limit theorems, continuity and intermediate value theorem, Derivative as limit, gradient, rates of change, differentiation from first principles, product and quotient rules, second derivatives and curve sketching, Linearity law of integration, indefinite and definite integrals, application of integration, methods of integration and solutions of simple first order differential equations by integration. Propositions, logical connectives, truth tables and logical equivalence, Properties of binary operations, inequalities, methods of proof and remainder theorem, Exponential and logarithmic functions, indices, laws of logarithms and inverse functions, Domain, range, injective, surjective, equations and inequalities involving simple rational functions and modulus function, Trigonometric functions, identities and equations, Equations of tangents and normal to circles, points of intersection of two curves, parametric representation and Cartesian equation of a curve, Three dimensional representation of vectors, addition and scalar product of vectors, position and unit vectors, length and direction of vector, vector equations of lines and planes, Concept of limits, limit theorems, continuity and intermediate value theorem, Derivative as limit, gradient, rates of change, differentiation from first principles, product and quotient rules, second derivatives and curve sketching, Linearity law of integration, indefinite and definite integrals, application of integration, methods of integration and solutions of simple first order differential equations by integration.

Teaching: Five (5) lectures and one (1) tutorial per week.

Method of Examination:

Final Theory Examination (3 hours)	50%
------------------------------------	-----

In-course Tests/Assignments	50%
-----------------------------	-----

In order to pass this course, Students MUST PASS BOTH the course work component and final examination.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

MATH0110 - CALCULUS AND ANALYTICAL GEOMETRY (6 Credits)

Pre-requisites: Caribbean Secondary Education Certificate (CSEC) General Proficiency course in Mathematic, and / or the CSEC General Proficiency course in Additional Mathematics, or EQUIVALENT.

Anti-requisite: MATH0102 Preliminary Mathematics 2

Syllabus: Express complex numbers in the form $a + bi$, where a and b are real numbers, Add, subtract, multiply and divide complex numbers, Interpret modulus and argument of a complex number in Argand diagram, Find the derivative of $e^f(x)$ and $\ln f(x)$, where $f(x)$ is a differentiable function of x , Find first and second derivatives of combinations of polynomials, trigonometric, exponential and logarithmic functions, Apply the chain rule to obtain gradients and equations of tangents and normal to curves given in parametric form, Use the concept of implicit differentiation, Integrate an improper rational function, exponential function and logarithmic function, Find integrals of the form $\int (f'(x))/f(x)$ and use substitutions to integrate functions (the substitutions will be given in non-trivial cases), Derive and use reduction formulae to obtain integrals which may involve integration by parts, Define the concept of a sequence as a function from the positive integers to the real numbers, Describe the behaviour of convergent and divergent sequences by simple examples, Define a series as the sum of n terms of a sequence, Define the m th partial sum as the sum of first m terms of the sequence. Use the Maclaurin and Taylor theorem for the expansion of series, Expand $(a+b)^n$, for $n \in \mathbb{Q}$ in terms of Pascal Numbers ($\binom{n}{r}$), Use linear interpolation to find an approximation for a root in a stated interval, Use the Newton-Raphson method to approximate roots, Find the number of ways of combining and permuting different objects, Define and calculate the probability of an event occurring by using simple laws, Invert a non-singular matrix of order n for $n = 2, 3$, Reduce a system of linear equations to echelon form, Determine whether a system of linear equations is consistent or inconsistent, Solve a differential equations of the form, $dy/dx + ky = f(x)$, where k is a constant or function of x and f is a function Solve second order ordinary differential equations with constant coefficients and given boundary conditions.

Teaching: Five (5) lectures and one (1) tutorial per week.

Method of Examination:

Final Theory Examination (3 hours) 50%

In-class Tests/Assignments 50%

In order to pass this course, Students MUST PASS BOTH the course work component and final examination.

LEVEL I MATHEMATICS COURSES

MATH1141 - INTRODUCTORY LINEAR ALGEBRA & ANALYTICAL GEOMETRY (3 CREDITS)

Pre-requisites: CAPE Pure Mathematics Units 1 and 2 or MATH0101 & MATH0102 Preliminary Mathematics 1 & 2 or MATH0100 Pre-Calculus & MATH0110 Calculus and Analytical Geometry or EQUIVALENTS

Syllabus: VECTORS IN THE EUCLIDEAN PLANE: algebraic definition and geometric interpretation of a vector; norm; triangle inequality; scalar product; projects; parallel and perpendicular vectors.

VECTORS IN 3-DIMENSIONAL SPACE: norm; scalar product and projections; vector product and its geometric interpretation; (parametric) equations of lines & planes; intersections and parallel lines & planes; skew lines; shortest distances between skew lines and points and planes.

SYSTEMS OF LINEAR EQUATIONS: the general case of m linear equations in n unknowns; consistent, inconsistent and over determined systems; Gaussian Elimination; row echelon form.

MATRIX ALGEBRA: addition, scalar and matrix multiplication; square matrices and non-singular matrices; transpose of a matrix; diagonal and triangular matrices; inverse of a matrix.

DETERMINANTS: properties, evaluation and recursive definition of determinants; elementary row and column operation; adjoint matrix; Cramer's rule.

COMPLEX NUMBERS: geometric interpretation of algebraic operations; Argand diagram; roots of polynomials.

CONIC SECTIONS: circles, ellipses, parabolas hyperbolas: construction and equations.

Teaching: Two (2) hours of lectures and one (1) tutorial session per week.

Method of Examination:

In-course Tests/Assignments	50%
Final Theory Examination	50%

MATH1152 - SETS AND NUMBER SYSTEMS (3 CREDITS)

Pre-requisite: Math1141 Introductory Linear Algebra & Analytical Geometry

Syllabus: LOGIC AND SET THEORY: statements in mathematics; negation, conjunction, disjunction, and implication; illustration of logical statements; proof and validity of arguments; definition of a set; subsets, unions and intersections; set algebra and De Morgan's laws.

RELATIONS: Cartesian product of sets; functions; injectivity and surjectivity; inverse of a function and inverse image; reflexive, symmetric and transitive relations; equivalence relations and partitions of sets; binary operations: commutative, associative and distributive operations

NATURAL NUMBERS: principle of mathematical induction; permutations and combinations; sequences

INTEGERS: divisibility; greatest common divisor and the Euclidean algorithm; infinitude of primes; fundamental theorem of arithmetic

RATIONAL NUMBERS: field axioms; $\sqrt{2}$ is irrational.

REAL NUMBERS: solution of linear and non-linear inequalities; absolute value and triangle inequality; sum of simple infinite series of real numbers (without tests for convergence)

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

COMPLEX NUMBERS: real and imaginary parts of a complex number; complex conjugates; modulus and argument of a complex number; triangle inequality; polar forms of a complex number

Teaching: Two (2) hours of lectures and one (1) tutorial session per week.

Method of Examination:

In-course Tests/Assignments	50%
Final Theory Examination	50%

MATH1190 - CALCULUS A (3 CREDITS)

Pre-requisites: CAPE Pure Mathematics Units 1 and 2 or MATH0101 & MATH0102 Preliminary Mathematics 1 & 2 or MATH0100 Pre-Calculus & MATH0110 Calculus and Analytical Geometry or EQUIVALENTS

Syllabus: LIMIT OF A SEQUENCE: limit of a sequence of real numbers; sum, product and quotient of convergent sequences.

INFINITE SERIES: partial sum of a series real numbers; definition of a convergent series, and examples of convergent and divergent series; comparison and ratio tests for convergence of a series

LIMITS OF FUNCTIONS: basic properties of limits; limit of $\sin(x)/x$ as x tends to zero; limit as x tends to infinity; evaluating the limits of functions.

CONTINUITY: definition of continuity at a point; examples of (dis)continuous functions; intermediate value theorem and its use to find roots of equations.

DERIVATIVE: definition of the derivative as the limit, as $h \rightarrow 0$, of $(f(x+h)-f(x))/h$; calculating the derivative of simple functions using the definition; derivation of the derivative of the sum, product, and quotient of functions; Leibniz's formula; chain rule; hyperbolic functions; Maclaurin and Taylor series expansions of functions using the definition; derivation of the derivative of the sum, product, and quotient of functions; Leibniz's formula; chain rule; hyperbolic functions; Maclaurin and Taylor series expansions of functions.

INTEGRATION: the definite integral as the limit of a sum; evaluating the (Riemann) integral of simple functions from the definition; statement and use of the fundamental theorem of calculus; evaluation of integrals by standard techniques; length of a curve.

FUNCTIONS OF TWO VARIABLES: functions of two variables and their graphs; functions of several variables; definition and calculation of the partial derivative of a function of several variables; maxima and minima of functions of two variables

Teaching: Two (2) hours of lectures and one (1) tutorial session per week.

Method of Examination:

In-course Tests/Assignments	50%
Final Theory Examination	50%

MATH1195 - CALCULUS B (3 CREDITS)

Pre-requisite: MATH1190 Calculus A

Syllabus: LIMITS OF FUNCTIONS: intervals, neighbourhoods and bounds of a function (of a single variable); - (ε, δ)-definition of a limit; properties/theorems of limits (with associated proofs); directed (left-hand and right-hand) limits; asymptotes.

CONTINUITY: continuity, removable and essential discontinuities; properties/theorems of continuous functions; intermediate value theorem; squeeze theorem; extreme value theorem.

DERIVATIVES: derivative of a function (definition, differentiability & continuity, left & right-hand derivatives); Rolle's theorem; mean value theorem (including Cauchy's mean value theorem); evaluating indeterminate forms $0/0$ & ∞/∞ using l'Hôpital's rule; other indeterminate forms: $0 \times \infty, \infty - \infty, 00, \infty 0, 1^\infty$

INTEGRATION AND DOUBLE INTEGRALS: reduction formulae; introduction to the double integral as a double sum; double integral as an iterated integral; transformations in double integration

Teaching: Two (2) hours of lectures and one (1) tutorial session per week.

Method of Examination:

In-course Tests/Assignments	50%
Final Theory Examination	50%

MATH1230 - INTRODUCTORY APPLIED STATISTICS 1 (3 CREDITS)

Pre-requisites: CAPE Pure Mathematics Units 1 and 2 OR MATH0101 & MATH0102 Preliminary Mathematics 1 & 2 OR MATH0100 Pre-Calculus & MATH0110 Calculus and Analytical Geometry or EQUIVALENTS.

Syllabus: OVERVIEW AND DESCRIPTIVE STATISTICS: population, samples, and processes; pictorial and tabular methods in descriptive statistics; measures of location and measures of variability components

PROBABILITY: sample spaces and events; axioms, interpretations, and properties of probability; counting techniques and conditional probability.

DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTION: random variables; probability distributions for discrete random variables; binomial probability distribution; hypergeometric, negative binomial distribution and Poisson probability distribution

CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS: continuous random variables and probability density functions; cumulative distribution functions and expected values; normal distribution.

POINT ESTIMATION: some basic general concept of point estimation

STATISTICAL INTERVALS BASED ON A SINGLE SAMPLE: basic properties of confidence intervals; large sample confidence intervals for a population mean and proportion; intervals for a population mean and proportion; intervals based on a normal population distribution; confidence intervals for the variance and standard deviation of a normal population.

TESTS OF HYPOTHESES BASED ON A SINGLE SAMPLE: hypotheses and test procedures; test about a population mean; tests concerning a population proportion; P-values and some comments on selecting a test procedure.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

INFERENCE BASED ON TWO SAMPLES: Z-tests and confidence intervals for a difference between two population means; two sample t-test and confidence interval; analysis of paired data; inferences concerning a difference between population proportions and inferences concerning two population variances.

THE ANALYSIS OF VARIANCE: single-factor ANOVA

SIMPLE LINEAR REGRESSION AND CORRELATION: simple linear regression model; estimating model parameters; inferences about the slope parameter; prediction of future Y values and correlation.

Teaching: Two (2) hours of lectures and one (1) tutorial session per week.

Method of Examination:

In-course Tests/Assignments	50%
-----------------------------	-----

Final Theory Examination	50%
--------------------------	-----

MATH1235 - PYTHON PROGRAMMING & MATHEMATICAL SOFTWARE (3 CREDITS)

Pre-requisite: CAPE Pure Mathematics Units 1 and 2 OR MATH0101 & MATH0102 Preliminary Mathematics 1 & 2 OR MATH0100 Pre-Calculus & MATH0110 Calculus and Analytical Geometry or EQUIVALENTS.

(No prerequisite programming knowledge is necessary for this course.)

Syllabus: INTRODUCTION TO SAGEMATH & COCALC: using Sage as a calculator; functions; matrices; solving problems symbolically; differentiation and integration in SageMath.

PYTHON PROGRAMMING: loops and conditional expressions; lists, tuples, dictionaries, and arrays; subroutines; program flow and good practice in programming

PLOTTING IN SAGE: graphing functions & integrals; axes labelling; contour plots and level sets; parametric plots; loglog plots

ELEMENTARY STATISTICS USING R: descriptive statistics; data visualization; interaction of R and SageMath.

ELEMENTS OF GEOGEBRA: Toolbar, simple construction, measurements, classical triangle centres (medians, centroid, altitudes, orthocentre)

ADVANCED TECHNIQUES IN GEOGEBRA: Check boxes, Pythagorean theorem

Teaching: Two (2) hours of lectures and one (1) tutorial session per week.

Method of Examination:

In-course Tests/Assignments	100%
-----------------------------	------

LEVEL II MATHEMATICS COURSES

MATH2304 - MULTIVARIABLE CALCULUS (3 CREDITS)

Pre-requisites: MATH1141 Introductory Linear Algebra & Analytical Geometry AND MATH1195 Calculus B AND MATH1235 Python Programming & Mathematical Software

Syllabus: EUCLIDEAN SPACES: vectors in \mathbb{R}^n ; scalar product (dot product), norm and angle; cross product; lines and planes; linear transformations.

VECTOR FUNCTIONS (CURVES): continuity & differentiation; arc length; application to the geometry of curves.

SCALAR FIELDS (SURFACES): graphs of scalar functions; continuity; differentiability, partial derivatives and gradient: properties and their relationship to each other; Clairaut's theorem; level sets; maxima, minima, and critical points of functions in \mathbb{R}^2 ; Lagrange multipliers; evaluating double integrals; double integrals over non-rectangular regions; change of variables in multiple integrals; spherical and cylindrical polar coordinates.

VECTOR FIELDS: continuity and differentiability; divergence, curl, and Laplace operator.

VECTOR INTEGRATION AND INTEGRAL THEOREMS: line integrals of scalar and vector fields; conservative vector fields; surface integrals; Green's theorem in a plane; Stokes' theorem; divergence theorem.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examinations:

In-class Tests/Assignments	50%
----------------------------	-----

Final Theory Examination (2 hours)	50%
------------------------------------	-----

MATH2305 - DIFFERENTIAL EQUATIONS (3 CREDITS)

Pre-requisites: MATH1195 Calculus B AND MATH1235 Python Programming & Mathematical Software

Co-requisite: MATH2304 Multivariable Calculus

Syllabus: BASIC CONCEPTS: definition of an ordinary differential equation (ODE); order, degree; linearity/nonlinearity solution of an ODE; initial conditions; n-parameter family of solutions; singular solution; general solution; particular solution; direction field; isocline; ordinary and singular point.

DIFFERENTIAL EQUATIONS OF FIRST ORDER: separable differential equations (including existence and uniqueness of solutions); homogenous differential equations; exact differential equation (including existence and uniqueness of solutions); integrating factor; linear differential equations of first order (including existence and uniqueness of solutions).

MODELLING AND EQUILIBRIA: classification of equilibria; modelling with ODEs: mixing problems, fishery, Newton's law of cooling, growth and decay processes (e.g., logistic equation), free fall, etc.

LINEAR DIFFERENTIAL EQUATIONS OF ORDER GREATER THAN TWO: definition of homogeneous and non-homogeneous linear differential equations of higher order; linear independence and Wronskian; existence and uniqueness theorem for initial value problems (IVPs); comparison to boundary value problems (BVPs); general solution of homogeneous linear differential equation with constant coefficients: characteristic equation and linear combination of solutions; particular solution of a nonhomogeneous linear differential equation with constant coefficients: variation of parameters and method of undetermined coefficients; examples of linear

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

differential equations with variable coefficients; applications of second order linear differential equations: free undamped/damped motion, non-resonant/resonant case, forced damped motion and steady-state solutions.

NUMERICAL METHODS: Euler's method, numerical solutions for first order ODEs; improved Euler's method; Runge-Kutta methods (RK4).

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

In-class Tests/Assignments	50%
Final Theory Examination (2 hours)	50%

MATH2310 - ABSTRACT ALGEBRA 1 (3 CREDITS)

Pre-requisite: MATH1152 Sets and Number Systems

Syllabus: SETS AND RELATIONS: equivalence relations; binary operations.

THE DEFINITION OF A GROUP: definition of a group; examples of groups (numbers, symmetries, matrices); properties of groups: cyclic, Abelian, finite.

SUBGROUPS, QUOTIENT GROUPS AND GROUP HOMOMORPHISMS: subgroups; cosets and Lagrange's theorem; Euler-Fermat theorem; Wilson's theorem; normal subgroups; construction of a quotient group; generating sets; homomorphisms of groups; kernel of a homomorphism; isomorphism theorems.

PERMUTATION GROUPS: symmetric group; transpositions and cycles; cycle decomposition and cycle structure; alternating group.

THE DEFINITION OF A RING: definition of a ring; examples of rings; special classes of rings; associativity and commutativity; zero-divisors and integral domains.

IDEALS, QUOTIENT RINGS, AND RING HOMOMORPHISMS: one-sided and two-sided ideals; construction of the quotient ring; maximal ideals; principal ideals; prime ideals; homomorphisms of rings; ring isomorphism theorems.

EUCLIDEAN RINGS: defining properties of Euclidean rings; Euclidean rings as principal ideal rings; divisibility and primality.

DIVISION RINGS: Elements of logic. Elements of set theory. Relations and functions. Finite permutations. Isomorphisms. Elementary theory of groups, rings, and fields.

Teaching: Two (3) lectures and one (1) tutorial per week.

Method of Examination:

In-class Tests/Assignments	50%
Final Theory Examination (2 hours)	50%

MATH2315 - LINEAR ALGEBRA 1 (3 CREDITS)

Pre-requisite: MATH1152 Sets and Number Systems AND MATH1235 Python Programming & Mathematical Software

Syllabus: REVISION OF FUNDAMENTALS OF LINEAR ALGEBRA: homogeneous and non-homogeneous systems of linear equations; augmented matrix; row space and column space of a matrix; elementary row and column

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

transformations: reduced row-echelon form; elementary matrices; matrix products via elementary row transformations; matrix products expressed as products of elementary matrices definition of determinant; properties of the determinant; Cramer's rule; cofactors and the inductive definition of the determinant; determinants and inverses of matrices.

VECTOR SPACES: vector space over an arbitrary field; subspaces; examples of vector spaces and subspaces; intersections of and direct sums of subspaces.

LINEAR INDEPENDENCE AND BASES: linear combinations; linear span; linear independence; bases; dimension; examples of vector spaces of finite dimension and of infinite dimension; dimension of a subspace.

LINEAR TRANSFORMATIONS: definition; null space and range; rank; rank-nullity theorem; matrix of a linear transformation; composition of transformations; change of basis.

INNER PRODUCT SPACES: properties of inner products; orthogonality; norms; orthonormal bases; the Gram-Schmidt orthogonalization process; orthogonal matrices.

EIGENVALUES AND EIGENVECTORS: properties of eigenvalues and eigenvectors; diagonalization of matrices; similarity; characteristic polynomial; Cayley-Hamilton theorem

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

In-class Tests/Assignments	50%
Final Theory Examination (2 hours)	50%

MATH2321 - REAL ANALYSIS 1 (3 CREDITS)

Pre-requisites: MATH1152 Sets and Number Systems AND MATH1195 Calculus B

Syllabus: REAL NUMBER SYSTEMS: preliminaries: sets, functions, logic and proofs; irrationality of $\sqrt{2}$; axioms of arithmetic and order hold for \mathbb{R} and \mathbb{Q} ; axiom of completeness; upper/lower bounds; supremum/infimum; nested interval property; Archimedean property; density of \mathbb{Q} in \mathbb{R} ; existence of square roots; countable and uncountable sets; countability of \mathbb{Q} ; the set \mathbb{R} is uncountable; Cantor's diagonal argument.

SEQUENCES AND SERIES: definition of sequence; converging sequences and their limit; bounded sequences; algebraic limit theorem and order limit theorem; monotone convergence theorem; partial sums and convergence of series; convergence of $\sum 1/n^2$, divergence of the harmonic series; subsequences; Bolzano-Weierstrass theorem; Cauchy sequence; Cauchy criterion; algebraic limit theorem for series; Cauchy criterion for series; geometric series; absolute convergence test; alternating series test; ratio & root test; rearrangement of series: absolute and conditional convergence.

TOPOLOGICAL PROPERTIES OF \mathbb{R} : open and closed sets; interior points; limit points; isolated points; bounded sets; compact sets and connectedness; Heine-Borel theorem.

FUNCTIONAL LIMITS AND CONTINUITY: functional limits; sequential criterion for functional limits; characterization of continuity; algebraic continuity theorem; composition of continuous functions; preservation of compact sets; extreme value theorem (attainment of bounds); uniform continuity; sequential criterion for nonuniform continuity; continuous functions defined on a compact set are uniform continuous; intermediate value theorem.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

In-class Tests/Assignments	50%
Final Theory Examination (2 hours)	50%

MATH2325 - ELEMENTARY NUMBER THEORY (3 CREDITS)

Pre-requisites: MATH1152 Sets and Number Systems AND MATH1235 Python Programming & Mathematical Software

Co-requisite: MATH2310 Abstract Algebra 1

Syllabus: THE NATURAL NUMBERS: Peano axioms; mathematical induction and strong induction; well-ordering principle.

DIVISIBILITY: properties of divisibility; division algorithm; representation of integers.

GREATEST COMMON DIVISOR: definition of GCD; GCD as linear combination; Euclid's lemma; least common multiple (LCM); Euclidean algorithm; linear Diophantine equations (existence of solutions; set of all solutions; existence of solutions in positive integers).

PRIMES: sieve of Eratosthenes; fundamental theorem of arithmetic; Euclid's proof of the infinitude of primes; distribution of primes (e.g., in arithmetic progressions).

CONGRUENCES: congruence modulo a number; equivalence relations and classes; residue classes; linear congruences; the set \mathbb{Z}^*n ; check digits in coding theory (ISBN-10 & UPC); Chinese remainder theorem.

SPECIAL CONGRUENCES: Fermat's little theorem; Euler's theorem; Euler's phi function (totient function) and its properties; Wilson's theorem.

PRIMITIVE ROOTS: order of an element modulo a number; existence of primitive roots; primitive roots modulo composites; straightedge and compass constructions - the regular 17-gon.

CRYPTOGRAPHY: monoalphabetic substitution ciphers and affine ciphers; Pohlig-Hellmann cipher; Massey-Omura exchange; RSA algorithm.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examinations:

In-class Tests/Assignments	50%
Final Theory Examination (2 hours)	50%

MATH2330 - PROBABILITY THEORY 1 (3 CREDITS)

Pre-requisite: MATH1195 Calculus B

Co-requisite: MATH2304 Multivariable Calculus

Syllabus: BASIC IDEAS OF PROBABILITY: definition of statistical experiment, sample space, events; the calculus of Events; equally likely events; combinatorial probability; definition of conditional probability; application to computing probabilities in simple situations; the theorem of total probability and Bayes' theorem; independent events; applications to simple situations including systems of components in series and in parallel.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

DISCRETE RANDOM VARIABLES: definition of a random variable; definition and examples of discrete and continuous random variables; the probability function and distribution function of a discrete random variable; definition and calculation of the expectation, variance, and moments of a discrete random variable from the probability function; detailed properties of the Bernoulli, binomial, hypergeometric, geometric and Poisson random variables; the Poisson approximation to the binomial.

CONTINUOUS RANDOM VARIABLES: probability density function (pdf) and distribution function of one continuous random variable; calculating the probability of an event from the pdf; percentiles of a continuous random variable; expectation and moments of a continuous random variable; the pdf and moments of the exponential, normal, gamma and chi-squared random variables; properties of one normal random variable; the normal approximation to the binomial; the distribution of X given $X > a$; the memoryless property of the exponential distribution; the Poisson process; the distribution of functions of one discrete or continuous random variable; the distribution function of any random variable.

SEVERAL RANDOM VARIABLES: joint distribution of several random variables in the discrete and continuous case; joint pdf; evaluating probabilities of events using the joint pdf of two random variables; marginal and conditional distributions; independence of random variables; expectation and its properties; $E(XY) = E(X)E(Y)$ when X and Y are independent; covariance and correlation; the mean and variance of linear combinations of several random variables; the distribution of linear combinations of independent normal random variables and simple applications.

SAMPLE STATISTICS: definition of a statistic; definition and distribution of the sample mean and the sample variance; special case when the population is normal; the central limit theorem and its applications to simple problems.

Teaching: Three (2) lectures and one (1) tutorial per week.

Method of Examination:

In-class Tests/Assignments	50%
Final Theory Examination (2 hours)	50%

MATH2335 - STATISTICS 1 (3 CREDITS)

Pre-requisites: MATH2330 Probability Theory 1 AND MATH1235 Python Programming & Mathematical Software

Syllabus: INTRODUCTION TO R AND MINITAB: brief introduction to the software packages and to their use in describing and summarizing data involving one variable and several variables using basic statistics, graphs and plots; nominal, ordinal and 'interval' or continuous data will be considered.

SAMPLING DISTRIBUTIONS: distribution of the sample means and sample variance including the special case of normality; the chi-squared, t and F distributions.

POINT ESTIMATION: definitions of parameter, parameter space, point estimator, bias, and mean squared error (MSE); $MSE = \text{variance}(\text{estimator}) + \text{bias squared}$; maximum likelihood estimators of one or more parameters.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

INTERVAL ESTIMATORS: the t and F distributions; derivation and calculation of confidence intervals of the means, difference between two means and variances in samples from normal populations with variance known and with variance unknown; confidence intervals for binomial proportions; sample size determination.

HYPOTHESIS TESTING: definitions of statistical hypothesis; null and alternative hypothesis; type I and type II errors; significance level and power of a test; calculating significance level and power of a test given the critical or rejection region; testing hypotheses concerning the means and variances of normal populations; testing hypotheses concerning proportions; definition and calculation of p values.

CONTINGENCY TABLES: testing for goodness of fit; independence.

EXPERIMENTAL DESIGN: designed experiments and observational studies; the completely randomized design; one-way ANOVA; Duncan's multiple range test examining assumptions of the linear model; the randomized complete block design; the statistical model and two-way ANOVA; Latin squares; factorial Designs involving two factors.

REGRESSION ANALYSIS: the idea of regression; the method of least squares; simple linear regression; use of graphical techniques to examine assumptions of the linear model; basic estimation, testing, and forecasting problems in regression.

NON-PARAMETRIC METHODS BASED ON RANKS: the sign test; signed rank test; rank-sum test; Kruskal-Wallis test.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examinations:

In-class Tests/Assignments	50%
Final Theory examination (2 hours)	50%

LEVEL III MATHEMATICS COURSES

MATH3543 - ABSTRACT ALGEBRA 2 (3 CREDITS)

Pre-requisites: MATH2310 Abstract Algebra 1 AND MATH2315 Linear Algebra 1

Syllabus: REVISION OF GROUPS: basic axioms and examples; centralizers, normalizers, stabilizers, and kernels; subgroups generated by subsets of a group; the lattice of subgroups of a group; cosets and Lagrange's theorem; isomorphism theorems; composition series; transpositions and the alternating group.

GROUP ACTIONS: group actions and permutation representation; groups acting on themselves; Cayley's Theorem; class equation; automorphisms; the Sylow Theorems; simplicity of An

DIRECT PRODUCTS AND ABELIAN GROUPS: direct products; Fundamental Theorem of Finitely Generated Abelian Groups; table of groups of small order; recognizing direct products; semidirect products.

FURTHER TOPICS IN GROUP THEORY: p-groups; nilpotent groups; solvable groups; free groups; application of groups of medium order.

POLYNOMIAL RINGS: polynomial rings over fields; polynomial rings that are unique factorization domains; irreducibility criteria.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

FIELD THEORY: field extensions; algebraic extensions; splitting fields and algebraic closures; cyclotomic polynomials and extensions.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examinations:

In-class Tests/Assignments	50%
Final Theory Examination (2 hours)	50%

MATH3545 - LINEAR ALGEBRA 2 (3 CREDITS)

Pre-requisites: MATH2310 Abstract Algebra 1 AND MATH2315 Linear Algebra 1 AND MATH2305 Differential Equations

Syllabus: PRELIMINARIES: revision of matrices; change of basis and similarity; special types of matrices; invariant subspaces; determinants; tensor products.

INNER PRODUCT SPACES: inner products (in \mathbb{R}^n); orthogonal complement and projection onto a subspace; unitary transformations; Gram-Schmidt Process and QR factorization; linear functionals and dual spaces.

DIAGONALIZATION & TRIANGULARIZATION: characteristic polynomial; algebraic & geometric multiplicity of eigenvalues; diagonalizability; triangularization theorem; Geršgorin Circle Theorem; eigenvalues of AB and BA .

JORDAN NORMAL FORM: reduction to block diagonal form; nilpotent matrices; Jordan Form of a general matrix; Cayley-Hamilton Theorem and minimal polynomial; Weyr normal form; applications: quadratic surfaces, functions of matrices, linear recurrence relations, and stability of certain systems of ordinary differential equations.

NORMAL MATRICES: unitary similarity; normal matrices and the Spectral Theorem; conditions for unitary similarity.

HERMITIAN MATRICES: conjugate bilinear forms; properties of Hermitian Matrices; positive definite matrices; simultaneous row and column operations; polar factorization and Singular Value Decomposition

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

In-class Tests/Assignments	50%
Final Theory Examination (2 hours)	50%

MATH3550 - REAL ANALYSIS 2 (3 CREDITS)

Pre-requisite: MATH2321 Real Analysis 1

Syllabus: THE DERIVATIVE: Derivatives and Intermediate Value Property, the Mean Value Theorem, Continuous Nowhere-Differentiable Functions.

SEQUENCES AND SERIES OF FUNCTIONS: Uniform Convergence of a Sequence of Functions, Uniform Convergence and Differentiation, Series of Functions, Power Series, Taylor Series.

THE RIEMANN INTEGRAL: the Definition of the Riemann Integral, Integrating Functions with Discontinuities, Properties of the Integral, the Fundamental Theorem of Calculus, Lebesgue's Criterion for Riemann Integrability.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

In-class Tests/Assignments	50%
Final Theory Examination (2 hours)	50%

MATH3555 - COMPLEX ANALYSIS (3 CREDITS)

Pre-requisite: MATH3550 Real Analysis 2

Syllabus: THE COMPLEX NUMBER PLANE: algebra, geometry, and topology of complex numbers; stereographic projection; curves and regions.

FUNCTIONS OF A COMPLEX VARIABLE: functions, limits, and continuity; (complex) differentiability; Cauchy Riemann equations; harmonic functions and introduction to conformal mapping.

INTEGRATION IN THE COMPLEX PLANE: path integrals; Cauchy's theorem and Cauchy-Goursat theorem; Cauchy's formulae; applications: Liouville's theorem, Gauss' fundamental theorem of algebra, maximum modulus theorem, applications in fluid dynamics, logarithms & multi-functions.

SEQUENCES AND SERIES: sequences of complex functions; power series & Cauchy-Taylor theorem; the identity theorem and the maximum principle; analytic continuation; Laurent series.

RESIDUE CALCULUS: isolated singularities; theorem of Casorati-Weierstrass and Picard's theorem; meromorphic functions; the residue theorem; evaluation of real integrals; evaluation of infinite sums.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

In-class Tests/Assignments	50%
Final Theory Examination (2 hours)	50%

MATH3560 - METRIC SPACES (3 CREDITS)

Pre-requisite: MATH3550 Real Analysis 2

Syllabus: DEFINITION & EXAMPLES: inequalities (Hölder, Minkowski, Cauchy-Schwarz); definition of a metric space; examples including Euclidean metric, discrete metric, space of all bounded sequences, ℓ^p -spaces, space of bounded/continuous functions.

SEQUENCES AND COMPLETION: sequences in metric spaces; Cauchy sequences in metric spaces; completion of a metric space.

TOPOLOGY: open and closed sets; relationship metric space – topological space; subspaces; countability axioms and separability; Baire's Category Theorem.

CONTINUITY: continuous mappings; extension theorems; real and complex-valued continuous functions; uniform continuity; homeomorphisms, equivalent metrics and isometry; uniform convergence of sequences of functions.

CONTRACTIONS: contraction mappings and applications (e.g., Picard's theorem, inverse function theorem)

COMPACT SETS: bounded sets and compactness; characterizations of compactness; continuous functions on compact spaces; locally compact sets; compact sets in special metric spaces

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

CONNECTED SETS: connectedness; local connectedness; path-connectedness.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

In-class Tests/Assignments	50%
Final Theory Examination (2 hours)	50%

MATH3565 - PROBABILITY THEORY 2 (3 CREDITS)

Pre-requisites: MATH2330 Probability Theory 1 AND MATH2335 Statistics 1 AND MATH2304 Multivariable Calculus AND MATH2321 Real Analysis 1

Syllabus: PROPERTIES OF EXPECTATION: Expectation of Sums of Random variables, Moments of Number of Events that Occur, Covariance, Variance of Sums, and Correlations, Conditional Expectation, Conditional Expectation and Prediction, Moment Generating Functions including Joint Moment Generating Functions, Additional Properties of Normal Random Variables, which will include The Multivariate Normal Distribution and The Joint Distribution of Sample Mean and Sample Variance.

LIMIT THEOREMS: Chebyshev's Inequality and the Weak Law of Large Numbers, The Central Limit Theorem, The Strong Law of Large Numbers and Bounding the Error Probability When Approximating a Sum of Independent Bernoulli Random Variables by a Poisson Random Variable.

FURTHER TOPICS IN PROBABILITY: The Poisson Process, Markov Chains, Surprise, Uncertainty, Entropy, and an Introduction to Coding Theory and Entropy.

SIMULATIONS: General Techniques for Simulation Continuous Random Variables, Simulating from Discrete Distributions and Variance Reduction Techniques.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Class tests/computer assignments	50%
Final Theory Examination (2 hour)	50%

MATH3570 - STATISTICS 2 (3 CREDITS)

Pre-requisites: MATH2335 Statistics 1 AND MATH3565 Probability Theory 2

Syllabus: ESTIMATION AND INTRODUCTORY BAYESIAN INFERENCE: Prior and Posterior Distribution, Conjugate Prior Distributions and Bayes Estimators.

FURTHER TOPICS IN ESTIMATION: Multi-parameter Case Estimation and testing, The EM-Algorithm, and Completeness and Uniqueness of Estimator Sufficiency.

OPTIMAL TESTS OF HYPOTHESES: Most Powerful Tests, Uniformly Most Powerful Tests, Likelihood Ratio Tests and The Sequential Probability Ratio Test.

SIMPLE COMPARATIVE EXPERIMENTS: Inferences About the Differences in Means, Inferences About the Differences in Means, Paired Comparison Designs.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

RANDOMIZED BLOCKS, LATIN SQUARES AND RELATED DESIGNS: Statistical Analysis of the RCBD Model Adequacy Checking, Estimating Model Parameters and the General Regression Significance Test, The Latin Square Design, The Graeco-Latin Square Design and Balanced Incomplete Block Design

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Class tests/computer assignments	50%
Final Theory Examination (2 hour)	50%

MATH3575 - TOPICS IN NUMERICAL ANALYSIS (3 CREDITS)

Pre-requisites: MATH2305 Differential Equations AND MATH2315 Linear Algebra 1 AND MATH3550 Real Analysis 2

Syllabus:

MACHINE ARITHMETIC: real numbers, machine numbers and rounding; machine arithmetic and error propagation in arithmetic operations; cancellation errors.

APPROXIMATION AND INTERPOLATION: least square approximations, inner products, least square errors, convergence; examples of orthogonal systems; polynomial interpolation (e.g., Lagrange, Chebyshev, Hermite); approximation and interpolation by spline functions.

NUMERICAL DIFFERENTIATION AND INTEGRATION: numerical differentiation (formula for unequally spaced points); numerical integration by composite trapezoidal and Simpson's rule; Newton-Cotes and Gauss formulae; applications of the Gauss Quadrature Rule.

NONLINEAR EQUATIONS: examples, iteration, convergence and efficiency; methods of bisection and Sturm sequences; secant and Newton's method (including acceleration); fixed point iteration; contraction mapping principle.

INITIAL VALUE PROBLEMS FOR ODEs: types of differential equations; existence and uniqueness; description of one-step methods: Euler's method, improved Euler's method, Runge-Kutta methods; stability, convergence and asymptotics of global error; error monitoring and step control; stiff problems.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

In-class Tests/Assignments	50%
Final Theory Examination (2 hours)	50%

MATH3580 - FOURIER ANALYSIS WITH PARTIAL DIFFERENTIALS EQUATIONS (3 CREDITS)

Pre-requisites: MATH2305 Differential Equations AND MATH2315 Linear Algebra 1 AND MATH3550 Real Analysis 2

Syllabus: GENESIS OF FOURIER ANALYSIS: vibrating string, derivation and solution of the wave equation; the heat equation: derivation of the heat equation and steady-state heat equation in the disc.

BASIC PROPERTIES OF FOURIER SERIES: examples; uniqueness of Fourier series; convolutions; good kernels; Cesàro and Abel summability.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

CONVERGENCE OF FOURIER SERIES: mean-square convergence of Fourier series; relation to pointwise convergence; an example of a continuous function with diverging Fourier series.

SOME APPLICATIONS OF FOURIER SERIES: isoperimetric inequality; Weyl's equidistribution theorem; an example of a continuous but nowhere differentiable function; the heat equation on the circle.

FOURIER TRANSFORM ON \mathbb{R} : definition of the Fourier transform; Schwartz space; Fourier inversion; Plancherel formula; application to some partial differential equations; Poisson summation formula; Heisenberg uncertainty principle.

FINITE FOURIER ANALYSIS: Fourier inversion theorem and Plancherel identity on $\mathbb{Z}N$; fast Fourier transform.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

In-class Tests/Assignments	50%
Final Theory Examination (2 hours)	50%

MATH3590 - MATHEMATICS RESEARCH PROJECT (3 CREDITS)

Pre-requisites: This course can be taken by students in the Double Major in Mathematics programme who have successfully completed all the second-year core Mathematics courses, or by exchange students in Mathematics who have completed the courses on offer at Cave Hill (or equivalent) at their respective home institutions. By permission of the Department.

MATH2304 Multivariable Calculus AND MATH2305 Differential Equations AND MATH2310 Abstract Algebra 1 AND MATH2315 Linear Algebra 1 AND MATH2321 Real Analysis 1

Syllabus: Utilize research methods to formulate suitable solutions to an applied or pure problem in Mathematics/Statistics. Analyse in detail a given applied or pure problem in Mathematics/Statistics and supply solutions to the problem. Use the LaTeX system in mathematical writing. Present mathematical research both orally and in writing. *Teaching:* Students must meet with their supervisors regularly (at least 6 times per semester) to discuss their research. They will research an advanced topic/problem including looking for appropriate literature, give a final oral presentation and author a final report. Students will be informed of the deadlines for the submission of the project proposal and final report and the week of the final oral presentations.

Ideally, students should contact a potential supervisor at the end of the semester prior to the semester they wish to take this course in to discuss the suitability of their project.

Method of Examination:

Either

AMS style Oral Mid-Semester Presentation (12 min. plus 3 mins. For question)

Or Preparation of a DIN-AO conference style Poster (either will be assessed by

members of Staff no later than the 7th week of the Semester) 15%

Final Oral Presentation 25%

Final Report 60%

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

MATH3600 - TOPICS IN DISCRETE AND COMPUTATIONAL GEOMETRY (3 CREDITS)

Pre-requisites: MATH1152 Sets and Number Systems AND MATH1235 Python Programming AND Mathematical Software AND 12 credits from Level II & III Mathematics courses.

Syllabus:

POLYGONS: Polygonal Jordan curves, Triangulations, Art Gallery Theorem, Scissors Congruence & Hilbert's Third Problem.

CONVEX HULLS: Convexity, Algorithms (Incremental Algorithm, Gift Wrapping, Divide-and-Conquer).

TRIANGULATIONS: Construction, the Flip Graph, Associahedron, Delaunay Triangulation.

VORONOI DIAGRAMS: Voronoi Geometry, Duality and the Delaunay Triangulation.

CURVES: Medial Axis, Straight Skeleton, Applications (Ricci flow, surface reconstruction etc.)

Teaching: Two (2) lectures and one (1) tutorial per week

Method of Examination:

In-class Tests/Assignments	50%
----------------------------	-----

Final Theory Examination (2 hour)	50%
-----------------------------------	-----

MATH3605 - TOPICS IN GRAPH THEORY (3 CREDITS)

Pre-requisites: MATH1152 Sets and Number Systems AND MATH1235 Python Programming & Mathematical Software AND 12 credits from Level II & III Mathematics courses.

Description: This is a first course in the theory and methods of complex variables. Many concepts in complex variable are generalizations of topics in calculus and real analysis, while other results and methods are specific to the subject itself. The material in this course is a blend of mathematical theorems and computational techniques. This course will be of interest to students majoring in mathematics or physics.

Syllabus: BASICS: Subgraphs, Components, Degrees of Vertices, Minors, Paths and Connectedness, Bipartite Graphs, Dual graphs, Isomorphisms, Examples of various graphs.

PATHS: Eulerian and Hamiltonian graphs.

DIRECTED GRAPHS: Orientable Graphs, Connectedness and Strong Connectedness, Tournaments.

TREES: Properties of Trees, Centers and Centroids, Counting the Number of Spanning Trees, Cayley's theorem.

CONNECTIVITY: Vertex Cuts and Edge Cuts, Connectivity and Edge-Connectivity.

MATCHINGS: Hall's marriage theorem.

NETWORKS: Flows, Ford-Fulkerson algorithm, maximum flow & minimum cut theorem.

GRAPH COLOURINGS: Vertex Colorings, Triangle-free Graphs, Edge Colorings.

PLANARITY: Planar and Nonplanar Graphs, K5 and K3,3; the Four-Color Theorem and Heawood's Five-Color Theorem.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

In-class Tests/Assignments	50%
----------------------------	-----

Final Theory Examination (2 hours)	50%
------------------------------------	-----

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

MATH3620 - FINANCIAL MATHEMATICS 1 (3 CREDITS)

Pre-requisites: MATH2304 Multivariable Calculus AND MATH2330 Probability Theory 1 AND MATH2315 Linear Algebra 1 AND MATH2335 Statistics 1

Course Co-requisite(s): MATH3565 Probability Theory 2.

Syllabus: INTEREST RATE MEASUREMENTS: Time Value of Money, Compound Interest, Simple Interest, Present Value, Future Value, Accumulation Functions, Effective Interest Rate, Nominal Interest Rate, Periodic Interest, Convertible Interest, Discount Rate, Nominal Discount Rate, Conversion of Nominal Interest Rate to Discount Rate, Accumulation Functions, Continuous Interest, Force of Interest, Constant Force of Interest, and Equation of Value.

VALUATION OF ANNUITIES: Annuities, Annuity Immediate, Annuity Due, Unit Annuity, Timelines, Geometric Series, Future Value of Annuities, Perpetuities, Annuities with Level Payments, Continuous Annuities, Annuities with Varying Payments, Increasing Annuities, Decreasing Annuities, Annuities with Arithmetic Progression, Annuities with Geometric Progression, Deferred Annuities, Variable Annuities, and Reinvestment Problems.

LOAN REPAYMENTS: Amortization, Amortization Table, Amortization with Variable Payments, Amortization with Level Payments, Prospective Method, Retrospective Method, Amortization with Arithmetic Payments, Amortization with Geometric Payments, Amortization with Monthly Payments, Instalment Loan, Sinking Fund, Net Interest, Sinking Fund Deposit, Sinking Fund Balance, Capitalization of Interest, and Negative Amortization.

BOND VALUATION: Bonds, Face Value, Par Value, Coupon Rate, Redemption Value, Premium Bond, Discount Bond, Bond Price, Premium- Discount Formula for Bonds, Makeham's Formula, Amortization of Premium, Amortization of Discount, Amount for Accumulation of Discount, Negative Amortization of Discount, Callable Bond, Call Provisions, Pricing Bonds between Payment Dates, Price-Plus Accrued, Flat Price, Settlement Date, Market Price, Accrued Interest and True Price.

MEASURING THE RATE OF RETURN ON AN INVESTMENT: Internal Rate of Return, Cash Flow, Modified Internal Rate of Return, Borrowing Projects, Time Weighted Rate, Dollar Weighted Rate, Investment Year Method, Portfolio Method, New Money Rate and Net Present Value.

THE TERM STRUCTURE OF INTEREST RATES: Term Structure of Interest Rates, Zero Coupon Bond, Risk-Free Rates, Spot Rate, Yield Curve, Treasury STRIP bond, Inverted Yield Curve, Flat Yield Curve, Law of One Price, Forward Rate and Implied Forward Rate.

CASHFLOW DURATION AND IMMUNIZATION: Assets, Liabilities, Liability Management, Matching Assets and Liabilities, Duration, Interest Rate Risk, Weighted Average, Macaulay Duration, Modified Duration, Volatility, Macaulay Duration of Coupon Bond, Taylor Series, Price Function $P(i)$, Convexity, Change in Price, Duration of Portfolio, Parallel Shift in Yield Curve, Immunization, Present Value Matching, Duration Matching, Greater Convexity for Assets, Fully Immunized, Stocks, Dividends, Price of Stock, Mutual Funds and Certificate of Deposit.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Class tests/computer assignments	50%
Final Theory Examination (2 hour)	50%

MATH3621 - FINANCIAL MATHEMATICS 2 (3 CREDITS)

Pre-requisites: MATH3620 Financial Mathematics 1 AND MATH3565 Probability Theory 2

Syllabus: INTRODUCTION TO DERIVATIVES: Derivative Security, Hedging, Bid-ask Spread and Long Position in Stock.

INSURANCE, HEDGING, AND SIMPLE STRATEGIES: Forward Contract, Spot Price, Stock Index, Cash Settlement, Long Forward, Short Forward, Payoff for Forward, Profit for Forward, Zero Coupon Bond Profit, Call Option, European Option, American Option, Bermudan Option, Premium, Written Call Option, Put Option, Written Put Option, In the Money Option, At the Money Option, Out of the Money Option, Insurance, Options S and Equity Linked CD.

INSURANCE, COLLARS, AND OTHER STRATEGIES: Floor Strategy, Cap Strategy, Covered Call, Covered Put, Parity, Put-Call, Covered Put, Parity, Put-Call, Synthetic Forward, Spread, Bull Spread, Bear Spread, Box Spread, Collar, Collar, Hedging with Zero Cost Collar, Straddle, Strangle and Equity Linked Notes (Marshall & Isley).

FORWARDS, FUTURES, AND SWAPS: Prepaid Forward Price, Arbitrage Pricing, Forward Contract on Stock, Pricing, Forward Premium, Synthetic Stock, Hedging with a Synthetic Stock, Cash and Carry Hedge, Quasi Arbitrage, Cost of Carry, Lease Rate, Futures Contracts, Clearing House, Open Outcry, Mark to Market, S&P 500 Futures Prices Compared and Quanto Index Contracts.

INTEREST RATE FORWARDS AND FUTURE: Spot Rate, Forward Interest Rate, Zero-Coupon Bonds, Implied Forward Rate, Forward Rate Agreement (FRA) and Eurodollars.

THE TERM STRUCTURE OF INTEREST RATES: Term Structure of Interest Rates, Zero Coupon Bond, Risk-Free Rates, Spot Rate, Yield Curve, Treasury STRIP bond, Inverted Yield Curve, Flat Yield Curve, Law of One Price, Forward Rate and Implied Forward Rate.

SWAPS: Swap, Oil, Swap Payments, Dealer as Swap Counterparty, Swap, Market Value, Interest Rate Swap, Swap Rate R, Swap Curve, Accreting Swap, Amortizing Swap, and Swap Rate General Formula.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Class tests/computer assignments	50%
Final Theory Examination (2 hour)	50%

MATH3955 - MATHEMATICS INTERNSHIP (3 CREDITS)

Pre-requisites: GPA of 3.0 or above in the Mathematics major. The student must have completed or be enrolled in courses totalling 60 credits or more. The department must approve the student. Approval by the department does not however guarantee placement. Enrolment in internship is subject to successful placement at a participating host organization.

Objectives: To provide the opportunity for students to gain workplace experience to improve their employment readiness by the time of graduation.

Syllabus: The course provides a formal internship of at least 4 weeks (160 hours) duration at a relevant private sector, public sector or non-Governmental organisation during which students undertake agreed upon activities relevant to their studies. Students will work under the guidance of a workplace supervisor as well as

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

an on-campus supervisor and will submit a report and make a presentation within the Department at the end of the internship. Through exposure to the working environment, students will acquire transferable skills that will be useful in any future employment sphere. The professional placement in an organisation will normally take place during the summer school period, and students will be registered for the course as a summer school course. Students intending to register for the course in summer must present an up-to-date curriculum vitae (CV) to the course coordinator by a stated deadline in semester 2. At the same time, host organisations will meet with the course coordinator and provide a summary of possible activities (work plan) successful students would undertake in their organisation. Student CVs will be circulated to potential workplace supervisors and the course coordinator will assign placements to the mutual satisfaction of the students and host organisations. Students may have to attend an interview before embarking on the professional placement.

Method of Examination:

Student's Placement Report	50%
Workplace Supervisor's Appraisal	35%
Oral presentation of report	15%

PHYSICS COURSES

PRELIMINARY PHYSICS COURSES

PHYS0070 - PRELIMINARY PHYSICS I (6 CREDITS)

Pre-requisite: None

Syllabus: SI units, dimensional analysis, vectors, equilibrium, Newton's laws of motion, linear motion, displacement, average and instantaneous velocity and acceleration, constant acceleration, free fall, relative velocity, motion in a plane, projectile motion, circular motion, centripetal force, applications of Newton's second law, gravitation, mass and weight, satellite motion, friction, work and kinetic energy, gravitational and elastic potential energy, dissipative and conservative forces, power, moments and torque, equilibrium problems, stress, strain, elastic moduli, Hooke's law, simple harmonic motion, mass-spring system, simple pendulum. Temperature, thermometers, scales, thermal expansion, heat capacity, phase changes, conduction, convection, radiation, Stefan-Boltzmann law, ideal gas, equation of state, phase diagrams, triple and critical points, vapor pressure, effect of dissolved substances on freezing and boiling point, first law of thermodynamics, work and heat, adiabatic, isochoric, isothermal and isobaric processes, internal energy, molecular theory of motion, kinetic theory of ideal gas. Mathematical representation of traveling waves, standing waves, behavior of waves at boundaries, interference, sound waves, beats, intensity, decibels, the ear and hearing, quality and pitch, Doppler effect, ultrasonics and applications. Pressure in a fluid, pressure gauges, Archimedes' principle, surface tension, contact angle and capillaries, Bernoulli's equation, viscosity, Stokes' law, Reynold's number.

Teaching: Three (3) lectures, one tutorial per week and 52 hours of practical work.

Method of Examination:

Final Theory Examination (3 hours)	60%
In-course Tests/Assignments	20%
Practical Reports	20%

PHYS0071 - PRELIMINARY PHYSICS II (6 CREDITS)

Pre-requisite: None

Syllabus: Electric charge, Coulomb's law, insulators and conductors, electric field, lines of force, electric potential, potential differences, electron volt, capacitance, series and parallel combination, energy stored in a capacitor, dielectrics, current, resistivity, resistance, electromotive force, work and power, resistors in series and parallel, Kirchoff's laws, Wheatstone bridge and potentiometer. Magnetic fields and field lines, magnetic flux, motion of a charged particle in a magnetic field, Thomson's measurement of charge to mass ratio for the electron (e/m), isotopes and spectrography, force on a current-carrying wires, induced emf, Faraday's law, Lenz's law, eddy currents, speed of light. Waves and rays, refraction and reflection from plane and spherical surfaces, refraction at plane and spherical surfaces, focal point and length, thin lenses, converging and diverging

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

lenses, lens maker equation, aberrations, the eye, defects of vision, magnifier, camera, projector, compound microscope, telescope. Atomic nucleus, radiation from nuclear decay, isotopes and isobars, binding energy and stability, alpha, beta and gamma rays, decay law, decay constant, half-life, activity, radioactive shielding.

Teaching: Three (3) lectures, one tutorial per week and 52 hours of practical work.

Method of Examination:

Final Theory Examination (3 hours)	60%
In-course Tests/Assignments	20%
Practical Reports	20%

LEVEL I PHYSICS COURSES

PHYS1200 - PHYSICS I: MECHANICS OF TRANSLATIONAL MOTION (3 CREDITS)

Pre-requisites: CAPE Physics Units 1 & 2 AND CAPE Pure Mathematics Units 1 & 2 OR EQUIVALENTS.

Co-requisite: PHYS1205 Physics II: Rotation, Waves and Thermodynamics

Objectives: Fundamentals of kinematics and dynamics of classical particles

Syllabus: Kinematics: Displacement, velocity and acceleration vectors. Constant acceleration in one dimension. Scalar and cross products. Projectile motion. Vector treatment of uniform circular motion. Dynamics: Force, mass, Newton's laws of motion. Static and kinetic friction; drag force. Centripetal force. Energy: Kinetic energy, work and the work-energy theorem. Work by gravity and springs; work done by a general variable force. Potential energy, conservative forces, conservation of mechanical energy, potential energy curves, energy and friction. Centre of mass, Newton's second law for a system of particles. Momentum: Linear momentum, impulse, conservation of linear momentum. Inelastic and elastic collisions in one dimension. Collisions in two dimensions. Systems with varying mass; rockets.

Teaching: Three (3) one-hour lectures, one (1) hour of tutorial and four (4) hours of practical per week.

Course runs during first six (6) weeks of Semester I.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-class Tests/Assignments	20%
Practical Reports	20%

PHYS1205 - PHYSICS II: ROTATION, WAVES AND THERMODYNAMICS (3 CREDITS)

Pre-requisites: CAPE Physics Units 1 & 2 AND CAPE Pure Mathematics Units 1 & 2 OR EQUIVALENTS.

Co-requisite: PHYS1200 Physics I: Mechanics of Translational Motion.

Objectives: Fundamentals of rotation, mechanical waves and thermodynamics.

Syllabus: Rotation: Rotational variables, angular velocity and angular acceleration. Constant angular acceleration. Relation between linear and angular variables. Kinetic energy of rotation, rotational inertia and torque. Newton's second law applied to rotating systems. Rolling motion as a combination of translation and

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

rotation. Angular momentum, rigid body rotation. Conservation of angular momentum, precession of a gyroscope. Waves: Simple harmonic motion. Energy in simple harmonic motion. Transverse and longitudinal waves. Traveling waves energy and power transmitted. Wave equation, superposition and interference of waves, standing waves and the Doppler effect. Thermodynamics: Temperature, heat and the first law of thermodynamics. Ideal gas equation of state and properties. Absorption of heat by liquids and solids. Mean free path, pressure, temperature and RMS speed. Adiabatic expansion of ideal gas. Second law of thermodynamics and entropy. Heat engines, refrigerators; efficiencies of real engines and refrigerators.

Teaching: Three (3) one-hour lectures, one (1) hour of tutorial and four (4) hours of practical per week. Course runs during second six (6) weeks of Semester I.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-class Tests/Assignments	20%
Practical Reports	20%

PHYS1210 - PHYSICS III: ELECTRIC FIELDS, CURRENTS AND CIRCUITS (3 CREDITS)

Pre-requisites: CAPE Physics Units 1 & 2 AND CAPE Pure Mathematics Units 1 & 2 OR EQUIVALENTS.

Co-requisite: PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics.

Objectives: Fundamentals of electric fields, electric potential, current, resistors and capacitors, simple circuits.

Syllabus: Electric fields: Electric charge and Coulomb's law. Electric field lines and Electric dipoles. Integration of charge distributions. Electric flux and Gauss' law. Electric potential and potential energy. Potential due to discrete and continuous charge distributions. Capacitance. Capacitors in series and parallel. Energy stored in capacitors, dielectrics. Currents and Circuits: Electric current and current density. Resistance and resistivity. Ohm's law, microscopic view. Power in electric circuits. Electromotive force (emf), work and energy. Calculation of currents in single and multiple-loop circuits. Ammeters and voltmeters. RC circuits.

Teaching: Three (3) one-hour lectures, one (1) hour of tutorial and four (4) hours of practical per week. Course runs during first six (6) weeks of Semester II.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-class Tests/Assignments	20%
Practical Reports	20%

PHYS1220 - PHYSICS IV: MAGNETISM, ELECTROMAGNETIC WAVES AND OPTICS (3 CREDITS)

Pre-requisites: CAPE Physics Units 1 & 2 AND CAPE Pure Mathematics Units 1 & 2 OR EQUIVALENTS.

Co-requisite: PHYS1210 Physics III: Electric Fields, Currents and Circuits.

Objectives: Fundamentals of magnetic fields, induction, electromagnetic waves, interference and diffraction.

Syllabus: Magnetism: Magnetic fields, Hall effect, cyclotrons and synchrotrons. Magnetic force on a current-carrying wire. Torque on a current loop. Magnetic dipole moment. Biot-Savart law. Force between two parallel currents. Ampere's law, solenoids and toroids. Inductance and Electromagnetic waves: Faraday's law of

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

electromagnetic induction and Lenz's law. Induced electric fields. Inductance and self-inductance. RL circuits. Energy stored in magnetic fields, mutual induction, LC oscillations. Damped oscillations in an RLC circuit. Alternating current. The series RLC circuit. Power in alternating-current circuits. Transformers, induced magnetic fields. Displacement current and Maxwell's equations. Traveling electromagnetic waves and energy transport: the Poynting vector. Polarization. Interference and Diffraction: Reflection and refraction. Total internal reflection. Light as a wave. Young's double slit experiment. Interference from thin films. Michelson's interferometer. Diffraction by a single slit, circular aperture, double slit. Diffraction gratings. X-ray diffraction.

Teaching: Three (3) one-hour lectures, one (1) hour of tutorial and four (4) hours of practical per week. Course runs during last six (6) weeks of Semester II.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-class Tests/Assignments	20%
Practical Reports	20%

LEVEL II PHYSICS COURSES

PHYS2400 - MATHEMATICAL METHODS IN PHYSICS I (3 CREDITS)

Pre-requisites: MATH1190 Calculus A AND MATH1195 Calculus B

Objectives: Fundamentals of applied mathematics used in advanced physics and engineering courses.

Syllabus: Taylor series, Maclaurin series, ratio test for convergence, interval of convergence, geometric series, telescoping series. Complex numbers, complex roots, complex elementary functions, Euler's formula. Equations of lines and planes in three-dimensional space, vectors, linear functions, diagonalization of matrices, eigenvectors and eigenvalues. Partial derivatives, total differentials, chain rule for functions of two or more independent variables, change of variables for two or more independent variables, Leibniz's rule, Lagrange multipliers. Cartesian, cylindrical and spherical coordinate systems, double and triple integrals, surface integrals, Jacobians. First order differential equations, separation of variables, integrating factor, exact differential equations, using Newton's second law to formulate differential equations.

Teaching: Two (2) one-hour lectures, one (1) hour of tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
Examination: In-class Tests/Assignments	40%

PHYS2405 - MATHEMATICAL METHODS IN PHYSICS II (3 CREDITS)

Pre-requisite: PHYS2400 Mathematical Methods in Physics I.

Objectives: Fundamentals of applied mathematics used in advanced physics and engineering courses (continuation from PHYS2400 Mathematical Methods in Physics I).

Syllabus: Vector fields, derivatives of vector fields and functions, directional derivatives, gradient, divergence and curl. Vector identities with div grad and curl. Line integrals, surface integrals, Green's theorem, divergence

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

theorem, Stokes' theorem. Periodic functions, Fourier series, complex Fourier coefficients, even and odd functions, Parseval's theorem, Fourier transforms. Ordinary differential equations and the Frobenius method, Laplace transforms, Dirac delta function, solving differential equations involving Dirac delta functions. Calculus of variations, Euler-Lagrange equation, Brachistochrone problem, Lagrange's form of mechanics. Wave equation, diffusion equation, Schrodinger's equation, Poisson's equation. Gamma functions, Legendre polynomials and Bessel functions.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
Examination: In-class Tests/Assignments	40%

PHYS2410 - MODERN PHYSICS (3 CREDITS)

Pre-requisites: PHYS1200 Physics I: Mechanics of Translational Motion AND PHYS1205 Physics II: Rotation, Waves and Thermodynamics AND PHYS1210 Physics III: Electric Fields, Currents and Circuits AND PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics.

Objectives: Fundamentals of special relativity, quantum mechanics, atomic and nuclear physics.

Syllabus: Lorentz contraction, time dilation, Lorentz transformations, velocity addition, Doppler effect, relativistic energy and momentum. Photons, photoelectric effect, blackbody radiation, matter waves and the de Broglie relation. Wave-particle duality, Heisenberg uncertainty principle, Compton effect, Bohr model of the atom. Time-independent Schrodinger equation, infinite potential well in one-dimension, finite potential wells with bound and scattering states, quantum tunneling, hydrogen atom, electron spin and the Stern-Gerlach experiment, magnetic resonance, lasers. Conductors, insulators and semiconductors. Doped semiconductors, p-n junctions, diodes, light-emitting diodes and transistors. Radioactive decay, radioactive dating, nuclear fission, nuclear reactors, thermo-nuclear fusion and the evolution of stars.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Method of Final Theory Examination (2 hours)	60%
Examination: In-class Tests/Assignments	40%

PHYS2415 - THEORY OF CLASSICAL MECHANICS (3 CREDITS)

Pre-requisites: PHYS1200 Physics I: Mechanics of Translational Motion AND PHYS1205 Physics II: Rotation, Waves and Thermodynamics AND PHYS1210 Physics III: Electric Fields, Currents and Circuits AND PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics.

Objectives: Fundamentals of classical mechanics treated with differential equations.

Syllabus: Newton's laws of motion in one-dimension, constant forces, position dependent forces, work-energy theorem, potential energy, turning points, velocity dependent forces, drag and terminal velocity. Full treatment of the simple harmonic oscillator, energy, damped harmonic motion, phase space, underdamped, overdamped and critically damped oscillator, driven damped harmonic oscillator and resonance. Displacement, velocity and

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

acceleration in two and three dimensions, potential energy in three-dimensional motion, separable forces, projectile motion with drag, harmonic oscillator in two and three dimensions, motion of charged particles in electric and magnetic fields, constrained motion of a particle. Accelerated coordinate systems and inertial forces, rotating coordinate systems, dynamics of particles in rotating systems, effects of Earth's rotation and Foucault pendulum. Gravity and central forces, orbit equation, effective potential, stability of orbits. Centre of mass, linear momentum, angular momentum and kinetic energy of a system of particles, motion of two interacting bodies and reduced mass.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-class Tests/Assignments	40%

PHYS2420 - ADVANCED PHYSICS LABORATORY I (3 CREDITS)

Pre-requisites: PHYS1200 Physics I: Mechanics of Translational Motion AND PHYS1205 Physics II: Rotation, Waves and Thermodynamics AND PHYS1210 Physics III: Electric Fields, Currents and Circuits AND PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics.

Objectives: Practical experience in conducting experiments, troubleshooting apparatus, data analysis, error analysis, writing proper laboratory reports, background research for experiments.

Syllabus: Several experiments performed, researched and written in a standard report format as outlined during the first four weeks of class. Mean and standard deviation, error analysis, method of least squares (to be examined in an in-class test). Examples of experiments: Millikan oil drop experiment, electron diffraction, photoelectric effect, Michelson interferometer, electron spin resonance, rotational motion and moment of inertia, Cavendish experiment (measurement of gravitational constant), hydrogen fuel cell, coupled oscillators, heat engine and ideal gas laws, Faraday rotation of polarized waves, magnetic force.

Teaching: Six (6) hours of laboratory per week. Lectures (proper writing of laboratory reports, data analysis and uncertainty analysis) during first four weeks embedded within the six hours of laboratory.

Method of Examination:

Written Laboratory Reports	70%
In-class Test	10%
Oral Presentation	20%

PHYS2425 - COMPUTATIONAL METHODS IN PHYSICS (3 CREDITS)

Pre-requisites: PHYS1200 Physics I: Mechanics of Translational Motion AND PHYS1205 Physics II: Rotation, Waves and Thermodynamics AND PHYS1210 Physics III: Electric Fields, Currents and Circuits AND PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics.

Objectives: Practical introduction to numerical analysis and computer simulation of physical problems.

Syllabus: Algorithms, pseudocode and flowcharts, programming syntax in a standard high level language (e.g., C, C++, FORTRAN), structural programming, basic UNIX commands, Monte Carlo simulation with

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

pseudorandom numbers, roots, quadrature, Euler method for numerical solution of differential equations, Fourier methods, concepts in computer modelling.

Teaching: One (1) one-hour lecture and four (4) hours of practical per week.

Method of Examination:

Final Theory Examination (2 hours)	40%
In-class Tests	20%
Practical Assignments	40%

PHYS2950 - PHYSICS ELECTIVE (3 CREDITS)

Pre-requisite: Depends on Institution offering course

Syllabus: An advanced course in Physics taken as an exchange student at an approved institution and pre-approved by the Dean. The course content will depend on the specific course delivered at the host institution.

Teaching: Depends on Institution offering course.

Method of Examination: Depends on Institution offering course.

LEVEL III PHYSICS COURSES

PHYS3420 - ELECTROMAGNETIC THEORY I (3 CREDITS)

Pre-requisite: PHYS2405 Mathematical Methods in Physics II.

Objectives: Fundamentals of quantitative electromagnetic theory treated with vector calculus and differential equations.

Syllabus: Scalar product, vector product, triple products, transformation properties of vectors, gradient, divergence and curl, vector identities, Laplacian, divergence theorem, Stokes' theorem, spherical and cylindrical coordinates, Dirac delta function, Coulomb's law, electric field, continuous charge distributions, Gauss' law, electric potential, Laplace's equation, Poisson's equation, boundary conditions, energy of assembling charge distributions, conductors and induced charge, capacitors, Earnshaw's theorem, uniqueness theorems, method of images, applications of separation of variables to Laplace's equation in Cartesian, cylindrical and spherical coordinate systems, multipole expansion of the electric potential, electric field of a dipole, Lorentz force law, currents, Biot-Savart law, divergence and curl of the magnetic field, Ampere's law, magnetic vector potential, magnetic boundary conditions, multipole expansion of the vector potential, electromotive force, Ohm's law, drift velocity, motional emf, Faraday's law, induced electric field, inductance, energy in magnetic fields, displacement current, Maxwell's equations, continuity equation and conservation of charge.

Teaching: One (1) one-hour lecture and four (4) hours of practical per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-class Tests	20%
Practical Assignments	20%

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

PHYS3445 - FUNDAMENTALS OF GENERAL RELATIVITY AND COSMOLOGY (3 CREDITS)

Pre-requisites: PHYS2410 Modern Physics AND PHYS2405 Mathematical Methods in Physics II.

Objectives: Mathematical treatment of special and general relativity with an introduction to Cosmology.

Syllabus: Review of special relativity, Einstein's postulates, Lorentz transformations, four-vectors, velocity, and energy, addition of velocities, four-velocity, light cone, proper time, time dilations, Doppler effect, Lorentz invariance, conservation laws, invariance of electric charge, covariance of electrodynamics. General relativity: time dilation in a gravitational field, rank of tensors, covariant and contravariant four-vectors, metric and Kronecker tensors, invariant equations, tensor algebra, tensor calculus, principle of equivalence, principle of general covariance, generally covariant forms of Maxwell's equations, curvature tensor, geometric analogies, Einstein's field equations, weak field, gauge invariance. Cosmology: measurements of cosmological distances, red shifts, standard model of cosmology, stellar equilibrium and collapse, Newtonian stars, white dwarfs, Chandrasekhar limit, neutron stars, supermassive stars, gravitational collapse, black holes, Schwarzschild solution, cosmological principle, tests of Einstein's theory, generation and detection of gravitational waves, early history of the universe, inflation, age of the universe, cosmic microwave background, curvature and the fate of the universe.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-class Tests	20%
Tutorial Assignments	20%

PHYS3450 - FLUID MECHANICS (3 CREDITS)

Pre-requisite: PHYS2415 Theory of Classical Mechanics.

Objectives: Fundamentals of the principles and theory of fluid mechanics.

Syllabus: Density, pressure, fluids in equilibrium, pressure gauges, Pascal's principle, Archimedes principle, buoyancy, types of flow, equation of continuity, Bernoulli's equation, scalars, vectors, tensors, contraction and multiplication, force on a surface, gradient, divergence and curl, divergence theorem, Stokes' theorem, particle and field description of fluid motion, flow lines, fluid acceleration and Galilean transformation, strain, rotation rates, simple plane flows, Reynold's transport theorem, conservation of mass, stream functions, conservation of momentum, constitutive equation for a Newtonian fluid, Navier- Stokes momentum equation, noninertial frame of reference, conservation of energy, boundary conditions, Kelvin and Helmholtz theorems, vorticity equation in an inertial frame of reference, interaction of vortices, exact solutions of steady laminar flow, elementary lubrication theory, similarity solutions for incompressible viscous flow, oscillations, low Reynold's number flow past a solid sphere.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
------------------------------------	-----

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

In-class Tests	20%
Tutorial Assignments	20%

PHYS3455 - LASERS AND OPTICAL SYSTEMS (3 CREDITS)

Pre-requisite: PHYS2400 Mathematical Methods in Physics I.

Objectives: Advanced quantitative study of principles of optics and lasers.

Syllabus: Complex representation of waves, plane waves, spherical waves, converging and diverging waves, paraxial approximation, Michelson interferometer, Fabry-Perot interferometer, addition of propagating waves, division of wave front, amplitude interferometers, multiple coherent oscillators, Huygens' principle, Fresnel formulation, Rayleigh-Sommerfeld diffraction, Fresnel and Fraunhofer diffraction, rectangular apertures, circular apertures, Rayleigh's criterion, Fresnel diffraction from straight edges, Cornu spiral, polarization, quarter and half wave plates, retarders, circular polarizers, Jones calculus, Mueller calculus, Faraday effect, Kerr effect, Pockel effect, Fourier optics, intensity impulse response, resolution, incoherent transfer function, point spread function, optical transfer function, modulation transfer function, lasers, population inversion, stimulated emission, Einstein's coefficients, solid state, gas, liquid and dye lasers, tunable, high power, high stability and short pulse lasers, width of spectral lines, gain of a lasing medium, Doppler, natural and collision broadening of spectral lines, axial and longitudinal modes of a laser cavity.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-class Tests	20%
Tutorial Assignments	20%

PHYS3460 - PHYSICS OF SUSTAINABLE ENERGY SYSTEMS (3 Credits)

Pre-requisite: PHYS2415 Theory of Classical Mechanics

Objectives: An in-depth survey of renewable energy systems: wind turbines, photovoltaics, hydroelectric, wave energy, ocean thermal energy conversion, storage.

Syllabus: Global energy system: social, economic and environmental impact. Wind turbines: wind resource assessment, wind turbine aerodynamics, airfoils, Betz coefficient, wind turbine control, turbine dynamics, small-scale wind power. Solar systems: solar radiation, geometric effects, atmospheric effects, spectrum, insolation, design, construction and operating principles of solar collectors, flat plate collectors, heat transfer characteristics. Hydroelectric plants: Precipitation, run-off, classification of hydroelectric power plants, design, construction and operation of dams, spillways, canals, penstocks, surge tanks, drift tubes, selection of turbine, speed and pressure regulation, governing, starting and stopping water turbines. Marine energy: ocean thermal energy conversion and sea water air conditioning, wave energy conversion. Electrical integration: centralized versus embedded generation, electric grids, demand curves and penetration from renewables, demand side management-deferrable loads, multiple voltages, generator characteristics and usage. Energy storage: energy densities, efficiency, lifetime, batteries, fuel cells, compressed air turbines, flywheels.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-class Tests	20%
Tutorial Assignments	20%

PHYS3465 - ELECTROMAGNETIC THEORY II (3 Credits)

Pre-requisite: PHYS3420 Electromagnetic Theory I

Objectives: A quantitative study of advanced topics in electromagnetic theory that builds on the principles learned in PHYS3420 Electromagnetic Theory I.

Syllabus: Electric and Magnetic Fields in Matter: Atomic polarizability, electric field of a polarized object, bound charge, electric field inside a dielectric, electric displacement, Gauss' law in the presence of dielectrics, susceptibility and permittivity, boundary value problems with linear dielectrics, energy and forces in dielectrics, torques and forces on magnetic dipoles, paramagnetism, effect of magnetic fields on atomic orbits, diamagnetism, magnetization, bound currents and their physical interpretation, auxiliary field, boundary conditions, linear and nonlinear media, ferromagnetism. Conservation Laws: Continuity equation, Poynting's theorem, momentum in electromagnetic fields, Maxwell's stress tensor, conservation of momentum, conservation of angular momentum. Electromagnetic Waves: Properties of waves and the wave equation, boundary conditions, reflection and transmission, Snell's law, polarization, monochromatic plane waves, energy and momentum in electromagnetic waves, electromagnetic waves in media, absorption and dispersion, wave guides, coaxial transmission lines. Potentials and Radiation: Gauge transformations, Coulomb and Lorentz gauges, retarded potentials, Jefimenko's equations, Lienard-Wiechert potentials, field due to a moving charge, electric dipole radiation, power radiated by moving point charges.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-class Tests	20%
Tutorial Assignments	20%

PHYS3470 - BIOLOGICAL PHYSICS (3 Credits)

Pre-requisite: PHYS3485 Theory of Statistical Mechanics

Objectives: An exploration of the connection between physics and biological systems at all levels: molecular, organelle, cellular, organism and population.

Syllabus: Biological systems overview: prokaryotes, eukaryotes, organelles, ATP, DNA, tRNA, mRNA, proteins, enzymes, ribosomes, mitochondria, membranes, endoplasmic reticulum, microtubules, multicellular organisms, intercellular communication, cell differentiation, populations, evolution. Statistical mechanics and living systems: biological order, osmotic flow, Gibbs free energy, entropy, Boltzmann distribution, self-

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

assembly of lipid bilayers, protein folding, aggregation, diffusion. Filaments in cells: elasticity of polymers, resistance of stretching from entropy, actin, cytoskeleton, microtubules, filament networks. Membranes: bilayer compression and bending resistance, thermal fluctuations and membrane shape, folding, locomotion, interactions between membranes. Molecular machines: transport in the cell, molecular motors and flagella, active pumping, sodium-potassium pumps, mitochondria and ATP synthesis. Information theory and evolving populations: information in living systems, acquisition of information through evolution, predator-prey relationships and the Lotka-Volterra equations.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-class Tests	20%
Tutorial Assignments	20%

PHYS3475 - FUNDAMENTALS OF SOLID STATE PHYSICS (3 Credits)

Pre-requisite: PHYS2410 Modern Physics

Objectives: A thorough grounding in the study of thermal, acoustic and electro-optical properties of crystals and amorphous solids

Syllabus: Bravais lattices, crystal planes and directions, Miller indices, types and classifications of crystal structure, interatomic forces and bonding, Bragg's law, scattering from atoms and crystals, reciprocal lattice, x-ray diffraction, experimental techniques of diffraction, Ewald construction, elastic waves, phonons, density of states function, Einstein and Debye specific heats, limitations of Einstein and Debye models, conduction electrons, properties of the free electron gas, thermal conductivity, electrical conductivity, heat capacity of conduction electrons, Fermi surface, Hall effect, limitations of the free electron model, Bloch's theorem, Brillouin zones, density of states, nearly free electron model, calculations of energy bands, metals, insulators, semiconductors, velocity and effective mass of Bloch electron, crystal momentum, holes, electrical conductivity, semiconductor statistics.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-class Tests	20%
Tutorial Assignments	20%

PHYS3480 - THEORY OF QUANTUM MECHANICS (3 Credits)

Pre-requisites: PHYS2410 Modern Physics AND PHYS2405 Mathematical Methods in Physics II

Objectives: Fundamentals of the formal theory of quantum mechanics with advanced mathematical treatment

Syllabus: Schrodinger's equation, statistical interpretation of wave function, expectation values, normalization, momentum operator, Ehrenfest's theorems, Heisenberg's uncertainty principle, stationary states, construction

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

of time dependent wave function from stationary states, infinite square well, harmonic oscillator, ladder operators, free particle, group velocity, versus phase velocity, Gaussian wave packet, finite square well, Hilbert space, inner products, eigenfunctions, eigenvalues, Dirac notation, Hermitian operators, Hermitian conjugate, continuous spectra, generalized uncertainty principle, commutators, time dependence of expectation values, spectral decomposition, Schrodinger's equation in three dimensions, solution in spherical coordinates, angular and radial solutions, spherical infinite potential well, hydrogen atom, angular momentum operators, commutation relations, ladder operators for angular momentum, normalization, Pauli spin matrices, electron in a magnetic field, Larmour frequency, addition of angular momenta.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-class Tests	20%
Tutorial Assignments	20%

PHYS3485 - THEORY OF STATISTICAL MECHANICS (3 Credits)

Pre-requisites: PHYS2410 Modern Physics AND PHYS2400 Mathematical Methods in Physics I

Objectives: Fundamentals of the formal theory of statistical mechanics with advanced mathematical treatment and some applications.

Syllabus: Probable configurations of systems using spin models, entropy introduced as the logarithm of the number of accessible states, thermal equilibrium, temperature introduced as the derivative of entropy with respect to energy, law of increase of energy for isolated systems, Boltzmann distribution, partition function, internal energy and heat capacity, pressure, Helmholtz free energy, quantum concentration, entropy of mixing, Planck distribution for a single mode, number of modes in a cavity, energy density and total internal energy, Stefan-Boltzmann law of radiation, energy flux density, equivalence of a black body to the cavity, absorptivity and emissivity, chemical potential, ideal gas, internal and external chemical potential with examples, derivation of the Gibbs distribution with examples, Fermi and Bose distributions, classical limit, derivation of properties of the ideal gas in the classical limit, entropy and the Sackur-Tetrode equation, heat capacity, internal energy, equation of state, ground state of the Fermi gas, Fermi energy, density of states, heat capacity of an electron gas, applications of the Fermi gas to white dwarf stars, Einstein condensation and the Einstein condensation temperature.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-class Tests	20%
Tutorial Assignments	20%

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

PHYS3490 - PHYSICS ONE-SEMESTER RESEARCH PROJECT (3 Credits)

Pre-requisite: Restricted to final year students majoring in Physics. By permission of the Department.

Objectives: Application and development of Physics knowledge to research area for one-semester duration

Syllabus: In consultation with and under the supervision of a Faculty member, students are expected to define, investigate and report on an applied or theoretical research topic in Physics. The project itself is equivalent to a single Faculty course (3 credits) and must therefore reach that standard in terms of content and research effort. The research will be summarized in a written report by the student of approximately thirty (30) pages. The report submitted at the end of the semester will summarize the results and contain the following: introduction, method, apparatus, data, analysis of results including calculated uncertainties of the results, conclusion. An oral presentation shall be delivered by the student at the end of the semester to a panel of faculty members which includes the supervisor.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Written Report	70%
Oral Examination	30%

PHYS3495 - PHYSICS TWO-SEMESTER RESEARCH PROJECT (6 Credits)

Pre-requisite: Restricted to final year students majoring in Physics. By permission of the Department.

Objectives: Application and development of Physics knowledge to research area for two-semester duration

Syllabus: In consultation with and under the supervision of a Faculty member, students are expected to define, investigate and report on an applied or theoretical research topic in Physics. The project itself is equivalent to two Faculty courses (6 credits) and must therefore reach that standard in terms of content and research effort. The research during the first semester will be summarized in a written report by the student of approximately thirty (30) pages. The report submitted at the end of the semester will mainly concern the background for the research and progress that has been made during that semester. An oral presentation shall be delivered on these topics at the end of the semester to a panel of faculty members which includes the supervisor. At the end of the second semester, a final written report, also containing approximately thirty (30) pages, shall be submitted containing the following: introduction, method, apparatus, data, analysis of results including calculated uncertainties of the results, conclusion. A final oral presentation shall be delivered by the student at the end of the second semester to a panel of faculty members which includes the supervisor.

Teaching: Two (2) one-hour lectures and one (1) hour of tutorial per week.

Method of Examination:

Written Report (Semester I)	35%
Oral Examination (Semester I)	15%
Written Report (Semester II)	35%
Oral Examination (Semester II)	15%

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

PHYS3955 - PHYSICS INTERNSHIP (3 Credits)

Pre-requisites: GPA of 3.0 or above in the Physics major. The student must have completed or be enrolled in courses totalling 60 credits or more. The department must approve the student. Approval by the department does not however guarantee placement. Enrolment in internship is subject to successful placement at a participating host organization

Objectives: To provide the opportunity for students to gain workplace experience to improve their employment readiness by the time of graduation.

Syllabus: The course provides a formal internship of at least 4 weeks (160 hours) duration at a relevant private sector, public sector or non-Governmental organisation during which students undertake agreed upon activities relevant to their studies. Students will work under the guidance of a workplace supervisor as well as an on-campus supervisor and will submit a report and make a presentation within the Department at the end of the internship. Through exposure to the working environment, students will acquire transferable skills that will be useful in any future employment sphere.

The professional placement in an organisation will normally take place during the summer school period, and students will be registered for the course as a summer school course. Students intending to register for the course in summer must present an up-to-date curriculum vitae (CV) to the course coordinator by a stated deadline in semester 2. At the same time, host organisations will meet with the course coordinator and provide a summary of possible activities (work plan) successful students would undertake in their organisation. Student CVs will be circulated to potential workplace supervisors and the course coordinator will assign placements to the mutual satisfaction of the students and host organisations. Students may have to attend an interview before embarking on the professional placement.

Method of Examination:

Student's Placement Report	50%
Workplace Supervisor's Appraisal	35%
Oral presentation of report	15%

COURSES BY SEMESTER

METEOROLOGY

SEMESTER I

LEVEL I

- METE1110 Introduction to Oceans and Climate
- METE1125 Mete. Observations, Instruments & Basic Analysis
- METE1130 Introduction to Physical Meteorology

LEVEL II

- METE2110 Atmospheric Thermodynamics
- METE2125 Dynamic Meteorology
- METE2305 Fundamentals of Hydrometeorology

LEVEL III

- METE3110 Advanced Dynamic Meteorology
- METE3210 Advanced Synoptic Meteorology
- METE3215 Synoptic Meteorology Lab II
- METE3420 Radar Meteorology

SEMESTER II

LEVEL I

- METE1125 Mete. Observations, Instruments & Basic Analysis
- METE1135 Introduction to Dynamic Meteorology
- METE1305 Intro. To Climate Change and Society
- METE1400 Mathematical Methods for Meteorology

LEVEL II

- METE2120 Physical Meteorology
- METE2210 Synoptic Meteorology
- METE2215 Synoptic Meteorology Lab I

LEVEL III

- METE3310 The Tropics and Tropical Weather Systems
- METE3425 Satellite Meteorology
- METE3505 Climate, Biosphere, and Ecosystems
- METE3600 Numerical Weather Prediction and Computational Methods

METEOROLOGY

Through our affiliate institution, the Caribbean Institute for Meteorology & Hydrology (CIMH), a Major and Minor in Meteorology are offered.

MAJOR IN METEOROLOGY: [Course descriptions](#)

LEVEL I (18 CREDITS)

METE1110 Introduction to Oceans and Climate
METE1125 Meteorological Observations, Instruments & Basic Analysis
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
METE1400 Mathematical Methods for Meteorology
MATH1190 Calculus A

AND at LEAST Three (3) Credits from:

METE2305 Fundamentals of Hydrometeorology
METE3420 Radar Meteorology
METE3425 Satellite Meteorology
METE3505 Climate, Biosphere and Ecosystems
METE3600 Numerical Weather Prediction and Computational Methods

LEVEL II & III (30 CREDITS)

LEVEL II (15 CREDITS)

METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2125 Dynamic Meteorology
METE2210 Synoptic Meteorology
METE2215 Synoptic Meteorology Lab I

LEVEL III (15 CREDITS)

METE3110 Advanced Dynamic Meteorology
METE3210 Advanced Synoptic Meteorology
METE3215 Synoptic Meteorology Lab II
METE3310 The Tropics and Tropical Weather Systems

MINOR IN METEOROLOGY: [Course Descriptions](#)

LEVEL I

METE1110 Introduction to Oceans and Climate
METE1125 Meteorological Observations,
Instruments & Basic Analysis
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
METE1400 Mathematical Methods for Meteorology
MATH1190 Calculus A

LEVEL II & III (15 CREDITS)

LEVEL II

METE2125 Dynamic Meteorology
METE2210 Synoptic Meteorology
METE2215 Synoptic Meteorology Lab I
AND Three (3) Credits from:
METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology

LEVEL III

AND Three (3) Credits from:
METE3110 Advanced Dynamic Meteorology
METE3210 Advanced Synoptic Meteorology*
METE3310 The Tropics and Tropical Weather
Systems
*MUST be taken together with METE3215 Synoptic
Meteorology Lab II

PROGRAMME STRUCTURE

METEOROLOGY

BSc METEOROLOGY

LEVEL I (24 CREDITS)

METE1110 Introduction to Oceans and Climate
METE1125 Meteorological Observations, Instruments & Basic Analysis
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
METE1400 Mathematical Methods for Meteorology
MATH1190 Calculus A

AND Six (6) Level I Credits from any Faculty

LEVELS II & III (60 CREDITS)

LEVEL II (15 CREDITS)

METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2125 Dynamic Meteorology
METE2210 Synoptic Meteorology
METE2215 Synoptic Meteorology Lab I

LEVEL III (15 CREDITS)

METE3110 Advanced Dynamic Meteorology
METE3210 Advanced Synoptic Meteorology
METE3215 Synoptic Meteorology Lab II
METE3310 The Tropics and Tropical Weather Systems

AND at LEAST Three (3) Credits from:

METE2305 Fundamentals of Hydrometeorology
METE3420 Radar Meteorology
METE3425 Satellite Meteorology
METE3505 Climate, Biosphere and Ecosystems
METE3600 Numerical Weather Prediction and Computational Methods

AND Thirty (30) Level II/III Credits from any Faculty. Three (3) of these credits can come from a Co-Curricular Course.

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

BSc METEOROLOGY AND PHYSICS

LEVEL I (30 CREDITS)

METE1110 Introduction to Oceans and Climate
METE1125 Meteorological Observations,
Instruments & Basic Analysis
METE1130 Introduction to Physical Meteorology
METE1135 Introduction to Dynamic Meteorology
MATH1190 Calculus A
MATH1195 Calculus B
PHYS1200 Physics I: Mechanics of Translational Motion
PHYS1205 Physics II: Rotation, Waves and Thermodynamics
PHYS1210 Physics III: Electric Fields, Currents and Circuits
PHYS1220 Physics IV: Magnetism, Electromagnetic Waves and Optics

LEVELS II & III (60 CREDITS)

LEVEL II (30 CREDITS)

METE2110 Atmospheric Thermodynamics
METE2120 Physical Meteorology
METE2125 Dynamic Meteorology
METE2210 Synoptic Meteorology
METE2215 Synoptic Meteorology Lab I
PHYS2400 Mathematical Methods in Physics
PHYS2405 Mathematical Methods in Physics II
PHYS2410 Modern Physics
PHYS2415 Theory of Classical Mechanics
PHYS2420 Advanced Physics Laboratory I

LEVEL III (30 CREDITS)

METE3110 Advanced Dynamic Meteorology
METE3210 Advanced Synoptic Meteorology
METE3215 Synoptic Meteorology Lab II

METE3310 The Tropics and Tropical Weather Systems

PHYS3420 Electromagnetic Theory I

PHYS3480 Theory of Quantum Mechanics

PHYS3485 Theory of Statistical Mechanics

AND at LEAST Three (3) Credits from:

METE2305 Fundamentals of Hydrometeorology

METE3420 Radar Meteorology

METE3425 Satellite Meteorology

METE3505 Climate, Biosphere and Ecosystems

METE3600 Numerical Weather Prediction and Computational Methods

AND at least Six (6) Credits from Level II/III Physics Elective Courses

AND NINE (9) CREDITS: FOUNDATION COURSES

FOUN1006 Exposition for Academic Purposes

OR

FOUN1008 An Introduction to Professional Writing

AND

*FOUN 1101 Caribbean Civilization

*FOUN1301 Law, Economy, Governance and Society

*A student may substitute one of these with a Foreign Language course.

THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026

METEOROLOGY COURSES

LEVEL I METEOROLOGY COURSES

METE1110 - INTRODUCTION TO OCEANS AND CLIMATE (3 Credits)

Pre-requisite: None

Restriction: Not to be taken with ENSC1002 Oceans and Climate

Co-requisites: METE1125: Meteorological Observations and Basic Analysis, METE1130: Introduction to Physical Meteorology AND METE1135 Introduction to Dynamic Meteorology

(+for Meteorology Majors and Minors ONLY)

Syllabus: This course is intended for students wishing to gain the essentials of climatology and oceanography. It is available to scientists and non-scientists alike. The course will provide information regarding the science of climate, the structure of the oceans, and the interaction of the ocean and the atmosphere as a driver of climate. Topics to be covered include the global radiation budget; heat and moisture transfer on the earth; the composition of the ocean; the chemical composition of the ocean; and ocean circulations.

Teaching: One (1) lecture, one (1) tutorial and two (2) hours of practical per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
------------------------------------	-----

Theory: In-course Tests/Assignments	40%
-------------------------------------	-----

METE1125 - METEOROLOGICAL OBSERVATIONS, INSTRUMENTS & BASIC ANALYSIS (3 Credits)

Pre-requisites: None

Co-requisites: None

Syllabus: This course is a yearlong 3-credit course in the practical aspects of meteorology. Topics to be covered include weather observations hands on approach to producing accurate weather observations, identifying weather symbols and the use of surface and upper air plotting models., use and maintenance of weather instruments; Use and interpretation of thermodynamic charts, scalar analysis, surface chart analysis, graphical subtraction and addition using analysis, calculation of geostrophic, gradient and thermal winds, frontal analysis, upper air analysis and analysis using current software packages.

Teaching: One (1) one (1) tutorial and two (2) hours of practical per week.

Method of Examination: The course will be assessed by means of 100% coursework as follows:

Laboratory Exercises:	50%
-----------------------	-----

Tests:	50%
--------	-----

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

METE1130 - INTRODUCTION TO PHYSICAL METEOROLOGY (3 Credits)

Pre-requisites: CAPE Pure Mathematics Units 1 & 2 (or equivalent) AND CAPE Physics Unit 1 (or EQUIVALENT).

Syllabus: The Atmosphere: composition and structure. Weather elements and instruments. Energy and heat transfer. Radiation and the Earth's atmosphere. Seasonal and daily temperatures. Energy budget. Clouds and precipitation. Thermodynamics. Simple thermodynamics chart analysis; Weather observations. Scalar analysis.

Teaching: Two (2) lectures, and one (1) tutorial hour per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-course Tests/Assignments	40%

METE1135 - INTRODUCTION TO DYNAMIC METEOROLOGY (3 Credits)

Pre-requisites: CAPE Pure Mathematics Units 1 & 2 (or equivalent) AND CAPE Physics Unit 1 (or equivalent).

Syllabus: Air pressure and winds. Wind: small-scale and local systems. Wind: global systems. Air masses and fronts. Middle-latitude cyclones. Thunderstorms and tornadoes. Tropical weather systems.

Teaching: Two (2) lectures, and one (1) tutorial of practical per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-course Tests/Assignments	40%

METE1305 - INTRODUCTION TO CLIMATE CHANGE AND SOCIETY (3 Credits)

Pre-requisites: None

Restriction: Cannot be taken by majors and minors in Meteorology. **Students are not allowed to take BOTH METE1200 (or METE1110) and METE1305 for credit.**

Syllabus: The biosphere: definition, evolution and contributions to climate and climate change. Global climate change with particular reference to the Caribbean region; the influence of climate change on biodiversity, livelihoods, population displacement, energy, food security, health and economic activity, global climate change policies and initiatives and the Caribbean region's evolving adaptation to climate change strategy.

Teaching: Two (2) lectures, one (1) tutorial hour per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-course Tests/Assignments	40%

METE1400 - MATHEMATICAL METHODS FOR METEOROLOGY (3 Credits)

Pre-requisite: MATH1190 Calculus A

Anti-requisite: MATH1195 Calculus B. This course will replace both MATH1195 Calculus B and PHYS2400 Mathematical Methods in Physics I.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Restriction: Students taking Meteorology 'and' or 'with' Mathematics as well as Students taking Meteorology 'and' or 'with' Physics are exempted from taking this course.

Syllabus: Further differentiation: Derivatives of inverse trigonometric functions, total derivative and total differentials, and exact differentials; Further Integration: integration by parts, integration using partial fractions, and rationalising and substitutions; Multivariable Calculus in Meteorology: functions of several variables, partial derivatives and their applications, gradient, divergence, and curl in meteorology, velocity potential and stream function, applications of multivariable calculus to meteorological problems; Vector calculus in meteorology: vector functions and space curves, vector operations and their relevance in meteorology, vector differentiation and applications in meteorology, line integrals and its meteorological significance, Gauss, Stokes, and Green's theorem and their applications; Introduction to Differential Equations in Meteorology: basic concepts of differential equations, first-order differential equations and their meteorological interpretations.

Teaching: Two (2) lectures, one (1) tutorial hour per week.

Method of Examination:

Final Theory Examination (2 hours)	50%
In-course Tests/Assignments	50%

Students must register for a pass in coursework (tests and/or assignments) and the final exam in order to be successful in the course.

LEVEL II METEOROLOGY COURSES

METE2110 - ATMOSPHERIC THERMODYNAMICS (3 Credits)

Pre-requisites: MATH1190 Calculus A and MATH1195 Calculus B (or MATH1120 Calculus I and MATH1130 Calculus II); METE1110 Introduction to Oceans and Climate, METE1125 Meteorological Observations, Instruments and Basic Analysis, METE1130 Introduction to Physical Meteorology and METE1135 Introduction to Dynamic Meteorology (or METE1000 Introduction to Physical Meteorology & Weather Observations, METE1100 Introduction to Dynamic Meteorology & Weather Systems and METE1200 Oceans & Climate or METE1010 Introduction to Meteorology I and METE1011 Introduction to Meteorology II).

Syllabus: Atmospheric composition. Equation of state for dry air. The first law of thermodynamics. Entropy. Thermodynamic diagrams. Equation of state for moist air. Vapour content of moist air. Thermodynamics of moist unsaturated air. Saturation. The pseudoadiabatic process. Hydrostatic equilibrium. Special atmospheres and the standard atmosphere. Dry adiabatic and pseudoadiabatic lapse rates. Buoyancy forces. Stability criteria for dry air and for moist air. Convective instability. Buoyant convection.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	50%
------------------------------------	-----

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

In-course Tests/Assignments	50%
-----------------------------	-----

METE2120 - PHYSICAL METEOROLOGY (3 Credits)

Pre-requisites: MATH1190 Calculus A and MATH1195 Calculus B (or MATH1120 Calculus I and MATH1130 Calculus II); METE1110 Introduction to Oceans and Climate, METE1125 Meteorological Observations, Instruments and Basic Analysis, METE1130 Introduction to Physical Meteorology and METE1135 Introduction to Dynamic Meteorology (or METE1000 Introduction to Physical Meteorology & Weather Observations, METE1100 Introduction to Dynamic Meteorology & Weather Systems and METE1200 Oceans & Climate or METE1010 Introduction to Meteorology I and METE1011 Introduction to Meteorology II).

Syllabus: Nucleation. Growth of cloud droplets by condensation and by collision and coalescence. Elementary growth models. Formation and growth of ice crystals. Drop size distribution functions. Widespread and convective precipitation. Electromagnetic radiation. Black body and laws of blackbody radiation. Scattering, reflection, absorption and emission of radiation in the atmosphere. Electronic, vibrational, and rotational transitions. Solar constant. Undepleted and depleted solar radiation. Determination of terrestrial radiation. Cloud destabilization and nocturnal development of thunderstorms. Mean heat balance of earth-atmosphere system. Atmospheric greenhouse effect. Meridional transfer processes. Selected optical phenomena. Atmospheric electricity. Atmospheric ozone.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	50%
In-course Tests/Assignments	50%

METE2125 - DYNAMIC METEOROLOGY (3 Credits)

Pre-requisites: MATH1190 Calculus A and MATH1195 Calculus B (or MATH1120 Calculus I and MATH1130 Calculus II), METE1110 Introduction to Oceans and Climate, METE1125 Meteorological Observations, Instruments and Basic Analysis, METE1130 Introduction to Physical Meteorology AND METE1135 Introduction to Dynamic Meteorology (or METE1000 Introduction to Physical Meteorology & Weather Observations, METE1100 Introduction to Dynamic Meteorology & Weather Systems and METE1200 Oceans & Climate or METE1010 Introduction to Meteorology I and METE1011 Introduction to Meteorology II).

Syllabus: Elementary vector methods in meteorology. Derivation of the equation of motion from Newton's law. The equation of motion in various co-ordinate systems. Simplification of the equation of motion. The conservation of mass. The basic equations with pressure as the vertical coordinate. Horizontal balanced motions; the geostrophic thermal wind. Concepts of circulation and vorticity; the circulation theorems and the vorticity equation and their applications. Structure and dynamics of the planetary boundary layer.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	70%
------------------------------------	-----

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

In-course Tests/Assignments	30%
-----------------------------	-----

METE2210 - SYNOPTIC METEOROLOGY (3 Credits)

Pre-requisites:

MATH1190 Calculus A and MATH1195 Calculus B (or MATH1120 Calculus I and MATH1130 Calculus II), PHYS2400 Mathematical Methods in Physics I, METE1110 Introduction to Oceans and Climate or METE1125 Meteorological Observations, Instruments and Basic Analysis, METE1130 Introduction to Physical Meteorology AND METE1135 Introduction to Dynamic Meteorology (or METE1000 Introduction to Physical Meteorology & Weather Observations, METE1100 Introduction to Dynamic Meteorology & Weather Systems and METE1200 Oceans & Climate or METE1010 Introduction to Meteorology I and METE1011 Introduction to Meteorology II).

Syllabus: The characteristics, structure and evolution of mid- latitude frontal systems and cyclones. Kinematics of horizontal motion and the computation of kinematic parameters of divergence, vorticity and deformation.

Co-requisites: METE2215 Synoptic Meteorology Lab I

Teaching: Two (2) lectures and one (1) tutorial per week

Method of Examination:

Final Theory Examination (2 hours)	70%
------------------------------------	-----

In-course Tests/Online Quizzes/Assignments	30%
--	-----

METE2215 - SYNOPTIC METEOROLOGY LAB I (3 Credits)

Pre-requisites: MATH1190 Calculus A AND MATH1195 Calculus B (or MATH1120 Calculus I AND MATH1130 Calculus II) AND PHYS2400 Mathematical Methods in Physics I AND METE1110 Introduction to Oceans and Climate AND METE1125 Meteorological Observations, Instruments and Basic Analysis AND METE1130 Introduction to Physical Meteorology AND METE1135 Introduction to Dynamic Meteorology (or METE1000 Introduction to Physical Meteorology & Weather Observations, METE1100 Introduction to Dynamic Meteorology & Weather Systems and METE1200 Oceans & Climate or METE1010 Introduction to Meteorology I and METE1011 Introduction to Meteorology II).

Co-requisites: METE2210 Synoptic Meteorology

Syllabus: Analysis of mid-latitude synoptic systems: surface and upper levels; use of finite difference methods; kinematics calculations and analysis; methods of estimating vertical motion, and the evaluation of advection. Analysis of scalar and vector fields.

Teaching: One (1) lecture, one (1) tutorial and two (2) hours of practical per week.

Method of Examination: The course will be assessed by means of 100% coursework as follows:

Laboratory Exercises:	40%
-----------------------	-----

Test:	60%
-------	-----

METE2305 - FUNDAMENTALS OF HYDRO-METEOROLOGY (3 Credits)

Pre-requisites: MATH1190 Calculus A AND MATH1195 Calculus B (or MATH1120 Calculus I and

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

MATH1130 Calculus II)

Syllabus: The hydrological cycle. Water balance concepts. Precipitation measurement and analysis. Interception and interception loss. Evaporation and evapo-transpiration measurement and estimation. Infiltration measurement and estimation. Rainfall-runoff processes. Flood risk management

Teaching: One (1) lecture, one (1) tutorial and two (2) hours of practical per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-course Tests/Assignments	40%

METE2950 - METEOROLOGY ELECTIVE (3 Credits)

Pre-requisite: Depends on Institution offering course.

Syllabus: An advanced course in Meteorology taken as an exchange student at an approved institution and pre-approved by the Dean. The course content will depend on the specific course delivered at the host institution.

Teaching: Depends on Institution offering course.

Method of Examination: Depends on Institution offering course.

LEVEL III METEOROLOGY COURSES

METE3110 - ADVANCED DYNAMIC METEOROLOGY (3 Credits)

Pre-requisites: METE2125 Dynamic Meteorology AND METE2210 Synoptic Meteorology AND METE2215 Synoptic Meteorology Lab I

Syllabus: The dynamics of developing synoptic scale systems in mid-latitudes including the quasi-geostrophic theory. The theory and behaviour of pure wave motions in the atmosphere. The barotropic and filtered baroclinic models; primitive equation models. The physical basis of baroclinic instability and cyclogenesis. The energy cycle and momentum budget of the atmosphere.

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	70%
In-course Tests/Assignments	30%

METE3210 - ADVANCED SYNOPTIC METEOROLOGY (3 Credits)

Pre-requisites: METE2125 Dynamic Meteorology AND METE2210 Synoptic Meteorology

Syllabus: The Polar front jet stream - structure and characteristics and its role in mid-latitude development. The pressure tendency equation and its applications. Theories of mid-latitude cyclone development; Characteristic and formation of cut-off cyclones, upper-level anticyclones, and blocking systems; Development theories associated with polar lows and dry lines.

Co-requisites: METE3215 Synoptic Meteorology Lab II

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Teaching: Two (2) lectures and one (1) tutorial per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-course Tests/Assignments	40%

METE3215 - SYNOPTIC METEOROLOGY LAB II (3 Credits)

Pre-requisites: METE2125 Dynamic Meteorology AND METE2210 Synoptic Meteorology AND METE2215 Synoptic Meteorology Lab I

Syllabus: Use of Meteorological weather Data display and analysis software. Four-dimensional analysis of mid-latitude synoptic systems; use of thickness maps, sounding and cross-sections. Introduction and wind and cross section analysis methods. Familiarization with and use of numerical products and satellite and radar data in analysis and forecasting.

Co-requisites: METE3210 Advanced Synoptic Meteorology

Teaching: One (1) lecture, one (1) tutorial and two (2) hours of practical per week.

Method of Examination: The course will be assessed by means of 100% coursework as follows:

Laboratory Exercises:	40%
Test:	60%

METE3310 - THE TROPICS AND TROPICAL WEATHER SYSTEMS (3 Credits)

Pre-requisites: METE3110 Advanced Dynamic Meteorology AND METE3210 Advanced Synoptic Meteorology AND METE3215 Synoptic Meteorology Lab II

Syllabus: General circulation of the tropics. The role of the tropics in the heat, energy and momentum budgets of the earth-atmosphere system. Tropical jet streams. Structure and characteristics of the tropical boundary layer and the trade wind inversion. Cumulus convection and scale interaction in the tropics. Structure and characteristics of synoptic scale systems in the tropics. Structure, behaviour and dynamics of tropical cyclones. Analysis of the evolution of tropical weather systems.

Teaching: One (1) lecture, one (1) tutorial and two (2) hours of practical per week.

Method of Examination:

Final Theory Examination (2 hours)	50%
In-course Tests/Assignments/Lab Assignments	50%

METE3420 - RADARS METEOROLOGY (3 Credits)

Pre-requisites: METE2110 Atmospheric Thermodynamics, METE2120 Physical Meteorology OR (METE2000 Physical Meteorology I, METE2001 Physical Meteorology II) AND METE2210 Synoptic Meteorology AND METE2215 Synoptic Meteorology Lab I

Syllabus: Radar Meteorology: Brief historical review. Radar components and related features. Electromagnetic waves. Radar beam characteristics. Propagation of radar waves. Formulation of the radar equation.

**THE FACULTY OF SCIENCE AND TECHNOLOGY
UNDERGRADUATE PROGRAMMES AND COURSES HANDBOOK 2025-2026**

Precipitation measurements. Principles of Doppler radar. Principles of Doppler radar. The use of Lidar and interferometric synthetic aperture radar. Interpretation of radar echoes. Applications and use of radar data in nowcasting.

Teaching: One (1) lecture, one (1) tutorial and two (2) hours of practical per week.

Method of Examination:

Final Theory Examination (2 hours)	50%
In-course Tests/Assignments	50%

METE3425 - SATELLITE METEOROLOGY (3 Credits)

Pre-requisites: METE2110 Atmospheric Thermodynamics, METE2120 Physical Meteorology OR (METE2000 Physical Meteorology I, METE2001 Physical Meteorology II) AND METE2210 Synoptic Meteorology AND METE2215 Synoptic Meteorology Lab I

Syllabus: Satellite Meteorology: Brief History and basic concepts. Instrumentation and receiving systems. Identification of cloud and weather systems. Synoptic analysis of satellite imagery. RGBs and RGB products. Atmospheric temperature and water vapor profiles. Satellite wind estimation. Precipitation estimation. Analysis of tropical cyclones. Satellite detection of aerosols and volcanic ash. Basic climate monitoring. Applications and use of satellite information.

Teaching: One (1) lecture, one (1) tutorial and two (2) hours of practical per week.

Method of Examination:

Final Theory Examination (2 hours)	60%
In-course Tests/Assignments	40%

METE3505 - CLIMATE, BIOSPHERE AND ECOSYSTEMS (3 Credits)

Pre-requisites: METE1110 Introduction to Oceans and Climate OR METE1200 Oceans & Climate OR BIOL1020 Diversity of Life I and 18 FST Level II/III credits.

Syllabus: Characteristics of Caribbean climate; intra- and inter-seasonal, inter-annual and inter-decadal climate variability. Role of climate in vegetation distribution. Influence of weather parameters on vegetation and terrestrial ecosystems. Bioclimatic indices and natural ecosystems. Weather, climate and coastal and marine ecosystems. Climate change and terrestrial, coastal and marine ecosystems. Role of vegetation in determining climate (biogeochemical cycles, albedo, roughness and fluxes).

Teaching: Two (2) lectures, and two (2) hours of practical per week.

Method of Examination:

Final Theory Examination (2hours)	60%
In-course Tests	10%
Essay Assignment & Computer Exercises	30%

METE3600 - NUMERICAL WEATHER PREDICTION AND COMPUTATIONAL METHODS

(3 Credits)

Pre-requisites: COMP1205 Computing I, METE3110 Advanced Dynamic Meteorology & METE3210 Advanced Synoptic Meteorology

Syllabus: A brief history of numerical weather prediction and its future. An evaluation of the numerical discretization of equations. An introduction of the parameterization of sub-grid-scale physical process. Introduction of data assimilation techniques. Atmospheric predictability and ensemble forecasting.

Teaching: One (1) lecture, one (1) tutorial and two (2) hours of practical per week.

Method of Examination:

Final Theory Examination (2 hours)	50%
In-course Tests/Assignments	50%