SARGASSUM IMPACTS IN WEST AFRICA: SENEGAL TO NIGERIA

Dr. Kafayat Adetoun Fakoya
Department of Fisheries, Lagos State University, Ojo, Lagos State, Nigeria.
INTRODUCTION

• Marine systems are prone to biological invasions with impact documented in fewer than 30% of globally recognized non-indigenous marine species (NIMS) and even fewer impacts quantitatively assessed.

• Marine macroalgae are a significant component of NIMS with current global estimates of introduced macroalgae ranging from 163 to >300 species (Davidson et al. 2015).

• Globally, there is a dramatic increase in “seaweed tides” has caused economic disruption to local economy and environment.

• Majority of beach inundations are caused by green seaweeds- Ulva casuing green tides and brown/ golden brown pelagic seaweed, Sargassum responsible for the golden tides.

• Prior to 2011, deposits of Sargassum occurred naturally and regularly on beaches, albeit in smaller quantities.
INTRODUCTION (CONTD.)

• In a balanced environment, *Sargassum* are important:
 - as unique nursery habitat and food especially for endangered species such as sea turtles.
 - for shoreline stability and nutrients for beach and dune plants.
 - as source of biochemicals, feed, food, fertiliser and fuel.

• Since 2011, the West Africa has been adversely affected by the pelagic seaweeds, *Sargassum*.

• Unprecedented impact in geographical scale and quantities consistent with global rise in seaweed tides in recent years.

• Concerted efforts have been initiated at local, regional and international organizations levels.
First Regional Expert Meeting on *Sargassum* invasion held in Sierra Leone, November 2015 on the request of nine West African countries.
INTRODUCTION (CONTD.)

• Studies of *Sargassum* impacts in West Africa are relatively few and just emerging; considerable knowledge gaps exist.

• Any study of the *Sargassum* phenomenon should include Greater Caribbean region to the Gulf of Mexico, West African coastal waters, Coastal waters off northern Brazil, North Equatorial Recirculation Region (NERR) (Kershaw et al., 2017).

• **Goal** is to summarize current knowledge of the golden tides impacts and management interventions in West Africa.

• **Objectives**:
 - review information on the causes of *Sargassum* inundations;
 - identified and potential impacts, and measures taken to mitigate golden tides in West Africa.
Ecology: Distribution and Biodiversity

- Generally, seaweeds are known to flourish in temperate regions (Fakoya et al., 2011).

- Variability in distribution and diversity is almost identical with phytoplankton productivity in areas close to nutrient-rich upwellings (King 2007).

- Tropical West Africa has a distinctive but depauperate flora except Ghana (John and Lawson, 1991).

- Genus *Sargassum* (> 350) is found throughout tropical and subtropical areas of the world (Milledge and Harvey, 2016).

- Five species: *Sargassum acinarium, S. cyniaun S. filipendula, S. ramifolum* and *S. vulgare* were reportedly found in some West African countries (John et al., 2003). While only *S. vulgare* and its variety (var. *foliosissimum*) distributed in 12 West African countries (Oyesiku and Egunyomi, 2014).
Causes of Sargassum invasion

• Pelagic *Sargassum* (*S. fluitans* and *S. natans*), blossom naturally in the Sargasso Sea and Gulf of Mexico (Grass-Sessay, 2015).

• Floating jungle or golden floating rainforest of the Atlantic Ocean (Milledge and Harvey, 2016).

• Observations of pelagic *Sargassum* date to the time of Christopher Columbus and more recently by satellite imagery—changes in biomass and range expansion (Brooks et al., 2018).

Figure 2. Examples of *S. natans* (left) and *S. fluitans* (right). Source: Kershaw et al. (2017).
Causes of *Sargassum* invasion

- *S. natans* and *S. fluitans* predominated in golden tides off West Africa in 2011 except Ghana where it was first recorded in 2009 (Addico and deGraft-Johnson, 2015).

- *Sargassum* influx in 2011 traced to a new source – NERR (Grass-Sessay, Kershaw et al., 2017).

- Flushing-out of *Sargassum* in the spring of 2011 from breakdown of the North Equatorial Counter Current (Grass-Sessay, 2015).

- Severity of inundations were less in Benin, Guinea and Togo than in Nigeria, Sierra Leone, Ghana and Cote d’Ivoire.

- Post - 2011, *Sargassum* influxes of lesser magnitude events were experienced and reached a critical maximum in 2015.

Figure 3. Origin of *Sargassum* influxes and inundations on the shorelines in the Caribbean and West Africa (black squares) (Source: Grass-Sessay, 2015, Kershaw et al., 2017)
Causes of *Sargassum* invasion

Figure 4. Invasion of *Sargassum* in Côte d’Ivoire (left) and in Sierra Leone (right). Source: Grass-Sessay (2015).
Causes of Sargassum invasion

• Presently, exact conditions responsible for the unusual bloom of pelagic Sargassum are unclear.
• Evidence of maritime traffic or aquaculture as most likely potential introduction vector is substantially weak or missing.
• According to Grass-Sessay (2015) and Kershaw et al., (2017), tentative chemical, physical and biological factors influencing proliferation of pelagic Sargassum include:
 • Availability of nutrients, from local or long-distance sources.
 - Variability of riverine nutrients inputs from the Congo River and the Amazon River;
 - Variability in the supply of iron due the atmospheric deposition of Saharan dust. Likely source in the occurrence of red tides in the Gulf of Mexico.
 - Increased land based nutrients and pollutants (which include nitrogen-heavy fertilizers and sewage waters) washing into the ocean water;
Causes of *Sargassum* invasion

- **Variability in ocean climate and ocean circulation**
 - *Sargassum* cycles are closely linked to seasonal change affecting production at Sea Surface Temperature;
 - Maps of the Sea Surface Temperature indicate that NERR and the Accumulation Region are the warmest regions in the Atlantic Ocean;
 - Variability in the position and intensity the Canary and Guinea Eastern Boundary Currents; associated equatorial upwelling and coastal upwelling off West Africa.

- **Enhanced capabilities to disperse and colonize new habitats outside its natural range**:
 - Asexual reproduction by fragmentation for new growth;
 - Free-floating; not requiring hold-fast mechanism or attachment.
Identified and potential impacts of Sargassum invasion

- Clogging of fishing nets (Adet et al., 2017)
- Entanglement of engine propellers.
- Limit access to beach for launching, recovering boats and cause boats to capsize

- Reduced fish catch
- Reduced fishing period and income

- Decrease in daily household earnings of women in processing, distribution and marketing of fisheries products.
- Affects daily earnings and livelihoods of other actors in small-scale fisheries value chain.
- Negative impact on community well-being viz-a-viz quality of life, children’s education, availability of social amenities e.g. healthcare etc.
Identified and potential impacts of *Sargassum* invasion

Tourism, Aesthetics and Health Aspects

- Beach fouling reduces access to the sea and shoreline for swimming and other activities.
- Irritation of skin, eyes and respiratory system from inhaling highly toxic hydrogen sulphide (Oyesiku and Egunyomi, 2014).
- Risks of fatality from inhaling low concentrations of highly toxic gas (Kershaw et al., 2017).

Ecological Effects

- Perturbation and relocation of marine species.
- Undocumented reports of fish kills.
- Beach erosion: sand may be inadvertently removed leading to depletion and possible shoreline instability.
- Restrict access of sea turtles to nesting sites; forming barrier to the sea for the hatchlings (Kershaw et al., 2017)
Initiatives related to the occurrence of massive accumulations of Sargassum

- A Regional Strategy Document coupled with an Implementation Plan and a GEF/PIF Form on *Sargassum* and invasive species for consideration by the Parties to the Convention in March 2017.

- Collaboration between Abidjan Convention and SPAW-RAC under coordination of UN.

- Key follow-up action to promote South-South Corporation with Caribbean states to enhance information sharing on “best management practices” of seaweed.

- Alignment of proposed National Action Plans with Regional Strategy Document inclusive of:
 - Establishing an early warning mechanism through an effective use of satellite images.
 - Setting-up an information management, monitoring and surveillance mechanism for tracking purposes.
 - Setting-up seaweeds farms in affected coastal communities which will serve as storage facilities and value-addition hubs.
Initiatives related to the occurrence of massive accumulations of Sargassum.

- Sierra Leone, Ghana and Ivory Coast have demonstrated actions on the management and utilization.

- UN Environment GPA: Coordinates efforts within UN Environment, including Regional Seas (Cartega and Abidjan Conventions).

- Sargassum subcommittee established by SCOR-IOC-UNESCO (GlobalHAB).

- WMO- Atmospheric nutrients inputs.

CONCLUSIONS

• Causes of recent blooms and mass strandings of *Sargassum* are not yet well understood.

• Fact is *Sargassum* proliferation is a consequence of warming and changing of ocean temperature due to global climate change.

• Critical knowledge gaps exist on the ecological impacts of invasive *Sargassum* on the ecosystem in general.

• Understanding what environmental factors are controlling recent variability is difficult, however, without understanding drivers of variability in *Sargassum* distribution on seasonal time scales.

• Discontinuous and unreliable supply coupled with presence of pollutants present a challenge to utilization.

• Expedient for South-South Collaboration and Cooperation between West Africa and the Caribbean + Gulf of Mexico on *Sargassum* phenomenon.
REFERENCES

Acknowledgements

Mr. Samsideen Oyebode, Federal Ministry of Environment, Abuja, Nigeria.

THANKING YOU FOR LISTENING!